scholarly journals Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors

2020 ◽  
Vol 19 (10) ◽  
pp. 1619-1631
Author(s):  
Elez D. Vainer ◽  
Juliane Kania-Almog ◽  
Ghadeer Zatara ◽  
Yishai Levin ◽  
Gilad W. Vainer

Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon-γ induces a similar signature in vitro. We identified 10 different temporal protein expression patterns, classifying the Interferon-γ protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.

2018 ◽  
Vol 115 (36) ◽  
pp. E8479-E8488 ◽  
Author(s):  
Michael J. Morgan ◽  
Brent E. Fitzwalter ◽  
Charles R. Owens ◽  
Rani K. Powers ◽  
Joseph L. Sottnik ◽  
...  

Molecular alterations that confer phenotypic advantages to tumors can also expose specific therapeutic vulnerabilities. To search for potential treatments that would selectively affect metastatic cells, we examined the sensitivity of lineage-related human bladder cancer cell lines with different lung colonization abilities to chloroquine (CQ) or bafilomycin A1, which are inhibitors of lysosome function and autophagy. Both CQ and bafilomycin A1 were more cytotoxic in vitro to highly metastatic cells compared with their less metastatic counterparts. Genetic inactivation of macroautophagy regulators and lysosomal proteins indicated that this was due to greater reliance on the lysosome but not upon macroautophagy. To identify the mechanism underlying these effects, we generated cells resistant to CQ in vitro. Surprisingly, selection for in vitro CQ resistance was sufficient to alter gene expression patterns such that unsupervised cluster analysis of whole-transcriptome data indicated that selection for CQ resistance alone created tumor cells that were more similar to the poorly metastatic parental cells from which the metastatic cells were derived; importantly, these tumor cells also had diminished metastatic ability in vivo. These effects were mediated in part by differential expression of the transcriptional regulator ID4 (inhibitor of DNA binding 4); depletion of ID4 both promoted in vitro CQ sensitivity and restored lung colonization and metastasis of CQ-resistant cells. These data demonstrate that selection for metastasis ability confers selective vulnerability to lysosomal inhibitors and identify ID4 as a potential biomarker for the use of lysosomal inhibitors to reduce metastasis in patients.


Blood ◽  
2006 ◽  
Vol 107 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Weihua Zeng ◽  
Akira Miyazato ◽  
Guibin Chen ◽  
Sachiko Kajigaya ◽  
Neal S. Young ◽  
...  

Abstract Hematopoietic effects of interferon-γ (IFN-γ) may be responsible for certain aspects of the pathology seen in bone marrow failure syndromes, including aplastic anemia (AA), paroxysmal nocturnal hemoglobinuria (PNH), and some forms of myelodysplasia (MDS). Overexpression of and hematopoietic inhibition by IFN-γ has been observed in all of these conditions. In vitro, IFN-γ exhibits strong inhibitory effects on hematopoietic progenitor and stem cells. Previously, we have studied the transcriptome of CD34 cells derived from patients with bone marrow failure syndromes and identified characteristic molecular signatures common to some of these conditions. In this report, we have investigated genome-wide expression patterns after exposure of CD34 and bone marrow stroma cells derived from normal bone marrow to IFN-γ in vitro and have detected profound changes in the transcription profile. Some of these changes were concordant in both stroma and CD34 cells, whereas others were specific to CD34 cells. In general, our results were in agreement with the previously described function of IFN-γ in CD34 cells involving activation of apoptotic pathways and immune response genes. Comparison between the IFN-γ transcriptome in normal CD34 cells and changes previously detected in CD34 cells from AA and PNH patients reveals the presence of many similarities that may reflect molecular signature of in vivo IFN-γ exposure.


2021 ◽  
Vol 22 (22) ◽  
pp. 12576
Author(s):  
Yuki Kawana ◽  
Hiraku Suga ◽  
Hiroaki Kamijo ◽  
Tomomitsu Miyagaki ◽  
Makoto Sugaya ◽  
...  

Mycosis fungoides (MF) and Sézary syndrome (SS), the most common types of cutaneous T-cell lymphoma (CTCL), are characterized by proliferation of mature CD4+ T-helper cells. Patients with advanced-stage MF and SS have poor prognosis, with 5-year survival rates of 52%. Although a variety of systemic therapies are currently available, there are no curative options for such patients except for stem cell transplantation, and thus the treatment of advanced MF and SS still remains challenging. Therefore, elucidation of the pathophysiology of MF/SS and development of medical treatments are desired. In this study, we focused on a molecule called OX40. We examined OX40 and OX40L expression and function using clinical samples of MF and SS and CTCL cell lines. OX40 and OX40L were co-expressed on tumor cells of MF and SS. OX40 and OX40L expression was increased and correlated with disease severity markers in MF/SS patients. Anti-OX40 antibody and anti-OX40L antibody suppressed the proliferation of CTCL cell lines both in vitro and in vivo. These results suggest that OX40–OX40L interactions could contribute to the proliferation of MF/SS tumor cells and that the disruption of OX40–OX40L interactions could become a new therapeutic strategy for the treatment of MF/SS.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2428-2435 ◽  
Author(s):  
Aurore Saudemont ◽  
Nathalie Jouy ◽  
Dominique Hetuin ◽  
Bruno Quesnel

AbstractTumor dormancy is a phenomenon where small numbers of tumor cells persist in the host for months or years. We previously showed in the DA1-3b/C3H mouse model of acute myeloid leukemia that dormant tumor cells resist cytotoxic T-lymphocyte (CTL)–mediated killing because they overexpress B7-H1. Here, we vaccinated mice with DA1-3b cells transduced with CXCL10. Vaccinated mice developed a strong systemic immunity that led to the cure of established leukemia without persistence of dormant tumor cells. In vivo depletion of natural killer (NK) cells from the mice abrogated the protective effect of the vaccine. Long-term persistent leukemic cells resist CTL-mediated lysis but were killed by NK cells from mice vaccinated with DA1-3b/CXCL10. These NK cells expressed B7-H1. Recombinant CXCL10, CXCL9, CXCL11, and CXCL12 chemokines induced expression of B7-H1 on mouse and human NK cells in vitro. Mouse and human B7-H1+ NK cells induced proliferation of T cells and production of interferon γ and tumor necrosis factor α in vitro, and in vivo blocking of B7-H1 inhibited the protective effect of vaccination. Thus, CXCL10 induces antileukemic immunity, at least partially by stimulating NK cells to express B7-H1+. This antitumor effect is in contrast to the effect of B7-H1 when expressed on tumor cells because it stops cytotoxic lymphocytes from killing those tumor cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siddarth Agrawal ◽  
Marta Woźniak ◽  
Mateusz Łuc ◽  
Sebastian Makuch ◽  
Ewa Pielka ◽  
...  

Abstract The present state of cancer chemotherapy is unsatisfactory. New anticancer drugs that marginally improve the survival of patients continue to be developed at an unsustainably high cost. The study aimed to elucidate the effects of insulin (INS), an inexpensive drug with a convincing safety profile, on the susceptibility of colon cancer to chemotherapeutic agents: 5-fluorouracil (FU), oxaliplatin (OXA), irinotecan (IRI), cyclophosphamide (CPA) and docetaxel (DOC). To examine the effects of insulin on cell viability and apoptosis, we performed an in vitro analysis on colon cancer cell lines Caco-2 and SW480. To verify the results, we performed in vivo analysis on mice bearing MC38 colon tumors. To assess the underlying mechanism of the therapy, we examined the mRNA expression of pathways related to the signaling downstream of insulin receptors (INSR). Moreover, we performed Western blotting to confirm expression patterns derived from the genetic analysis. For the quantification of circulating tumor cells in the peripheral blood, we used the maintrac method. The results of our study show that insulin-pretreated colon cancer cells are significantly more susceptible to commonly used chemotherapeutics. The apoptosis ratio was also enhanced when INS was administered complementary to the examined drugs. The in vivo study showed that the combination of INS and FU resulted in significant inhibition of tumor growth and reduction of the number of circulating tumor cells. This combination caused a significant downregulation of the key signaling substrates downstream of INSR. The results indicate that the downregulation of PIK3CA (phosphatidylinositol 3-kinase catalytic subunit alpha), which plays a critical role in cell signaling and GRB2 (growth factor receptor-bound protein 2), a regulator of cell proliferation and differentiation may be responsible for the sensitizing effect of INS. These findings were confirmed at protein levels by Western blotting. In conclusion, these results suggest that INS might be potentially applied to clinical use to enhance the therapeutic effectiveness of chemotherapeutic drugs. The findings may become a platform for the future development of new and inexpensive strategies for the clinical chemotherapy of tumors.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Inês Godet ◽  
Yu Jung Shin ◽  
Julia A. Ju ◽  
I Chae Ye ◽  
Guannan Wang ◽  
...  

Abstract Hypoxia is known to be detrimental in cancer and contributes to its development. In this work, we present an approach to fate-map hypoxic cells in vivo in order to determine their cellular response to physiological O2 gradients as well as to quantify their contribution to metastatic spread. We demonstrate the ability of the system to fate-map hypoxic cells in 2D, and in 3D spheroids and organoids. We identify distinct gene expression patterns in cells that experienced intratumoral hypoxia in vivo compared to cells exposed to hypoxia in vitro. The intratumoral hypoxia gene-signature is a better prognostic indicator for distant metastasis-free survival. Post-hypoxic tumor cells have an ROS-resistant phenotype that provides a survival advantage in the bloodstream and promotes their ability to establish overt metastasis. Post-hypoxic cells retain an increase in the expression of a subset of hypoxia-inducible genes at the metastatic site, suggesting the possibility of a ‘hypoxic memory.’


2001 ◽  
Vol 17 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Douglas T. Ross ◽  
Charles M. Perou

Cell lines derived from human tumors have historically served as the primary experimental model system for exploration of tumor cell biology and pharmacology. Cell line studies, however, must be interpreted in the context of artifacts introduced by selection and establishment of cell linesin vitro. This complication has led to difficulty in the extrapolation of biology observed in cell lines to tumor biologyin vivo. Modern genomic analysis tool like DNA microarrays and gene expression profiling now provide a platform for the systematic characterization and classification of both cell lines and tumor samples. Studies using clinical samples have begun to identify classes of tumors that appear both biologically and clinically unique as inferred from their distinctive patterns of expressed genes. In this review, we explore the relationships between patterns of gene expression in breast tumor derived cell lines to those from clinical tumor specimens. This analysis demonstrates that cell lines and tumor samples have distinctive gene expression patterns in common and underscores the need for careful assessment of the appropriateness of any given cell line as a model for a given tumor subtype.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Sign in / Sign up

Export Citation Format

Share Document