Endothelial cell-selective adhesion molecule is a novel human hematopoietic stem cell marker associated with a subset of human leukemias

2015 ◽  
Vol 43 (9) ◽  
pp. S69
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Hirokazu Tanaka ◽  
Michiko Ichii ◽  
Takao Sudo ◽  
...  
Stem Cells ◽  
2009 ◽  
Vol 27 (3) ◽  
pp. 653-661 ◽  
Author(s):  
A. G. Lisa Ooi ◽  
Holger Karsunky ◽  
Ravindra Majeti ◽  
Stefan Butz ◽  
Dietmar Vestweber ◽  
...  

2004 ◽  
Vol 319 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Mareike Florek ◽  
Michael Haase ◽  
Anne-Marie Marzesco ◽  
Daniel Freund ◽  
Gerhard Ehninger ◽  
...  

Hepatology ◽  
1998 ◽  
Vol 27 (2) ◽  
pp. 433-445 ◽  
Author(s):  
Bryon E. Petersen ◽  
Julie P. Goff ◽  
Joel S. Greenberger ◽  
George K. Michalopoulos

2016 ◽  
Vol 44 (4) ◽  
pp. 269-281.e1 ◽  
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Hirokazu Tanaka ◽  
Michiko Ichii ◽  
Takao Sudo ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 564-564
Author(s):  
Ingrid G Winkler ◽  
Valerie Barbier ◽  
Bianca Nowlan ◽  
Theodore Smith ◽  
John T Patton ◽  
...  

Abstract Abstract 564 The behaviour of a hematopoietic stem cell (HSC) is regulated by its immediate micro-environment or niche. We have identified a novel function for the adhesion molecule E-selectin which is constitutively expressed on bone marrow (BM) vasculature. Using mice knocked-out for E- (E-/-) or P-selectin (P-/-) genes, we investigated whether selectin absence alters HSC behaviour in vivo. We found HSC cycling in the absence of E-selectin to be significantly delayed 2.5-fold in BrdU incorporation assays compared to either P-/- or WT (mice were administered BrdU for 3d then BrdU incorporation in BM Lineage-KIT+Sca1+(LKS+)CD34- or LKS+CD48-CD150+cells measured). To confirm these findings, LKS+ cells were stained with rhodamine123, a vital dye retained by metabolically active cells but not quiescent HSC. More LKS+ cells from E-/- mice were rhodamine dull (34±2%) than WT (23±1%; p=0.037) confirming that a greater proportion of HSC from E-/- mice are quiescent. We then determined whether administration of E-selectin antagonists alone could similarly delay HSC turnover. Mice were administered the glycomimetic E-selectin antagonist GMI-1070, for set periods of time before harvest. We found HSC turnover to be significantly delayed following GMI-1070 administration (1.4 fold less BrdU incorporation, p=0.011) with a concomitant 1.4-fold increase in the number of Rho123 dull LSK+ quiescent HSC per femur (p=0.020). Non-cycling, quiescent HSC are known to be more resistant to chemotherapy and irradiation. Indeed 7 days following 5-FU administration, we found that E-/- mice had faster BM HSC recovery / less HSC damage compared to WT mice, both by phenotype analysis and in a competitive long-term reconstituting assay. Following 5-FU administration the number of reconstituting units/femur in WT mice decreased 5.1-fold but only decreased 2.3-fold in similarly treated E-/- mice. Interestingly, when mice were pre-treated with GMI-1070 before 5-FU, there was significantly enhanced blood neutrophil recovery compared to mice administered 5-FU alone (blood neutrophils were 710±205 ×103/mL with GMI-1070, compared to 234±141 ×103/mL without, at day 9 post-5-FU, p=0.0001). Similarly when mice were severely irradiated and test bleeds performed weekly, a more rapid haematopoietic recovery was observed in E-/- compared to WT mice. In summary, we have identified a novel function for the adhesion molecule E-selectin. HSC turnover is dramatically reduced in E-/- mice an effect that can be replicated by transient administration of E-selectin antagonist mimetics. Furthermore blood leukocyte and HSC numbers recover faster following cytotoxic or irradiation injury in the absence or blockage of E-selectin-mediated cell adhesion. Thus E-selectin may well be a crucial component of the proliferative HSC niche regulating HSC turnover. Blockage of E-selectin adhesive interaction by GMI-1070, a novel E-selectin antagonist that has completed phase I clinical trails, may represent a promising treatment for the protection of HSC during chemotherapy. Disclosures: Winkler: Glycomimetics Inc: Research Funding. Smith:GlycoMimetics, Inc: Employment. Patton:GlycoMimetics, Inc: Employment. Magnani:GlycoMimetics, Inc.: Employment. Levesque:Glycomimetics Inc.: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4303-4303
Author(s):  
Laura R. Goldberg ◽  
Mark S Dooner ◽  
Yanhui Deng ◽  
Elaine Papa ◽  
Mandy Pereira ◽  
...  

Abstract The study of highly purified hematopoietic stem cells (HSCs) has dominated the field of hematopoietic stem cell biology. It is widely believed that the true stem cell population lies within the Lineage negative (Lin-) population, further sub-fractionated using positive and negative selection for surface markers such as c-Kit, Sca-1, CD150, CD41, CD48, and CD34. It is research on these highly purified subsets of HSCs that forms the foundation for almost all our knowledge of HSCs, and has led to the dogma that marrow stem cells are quiescent with a stable phenotype and therefore can be purified to near homogeneity. In contrast, we have shown that a large percentage of long-term multi-lineage marrow repopulating cells in whole bone marrow (WBM) are actively cycling, that these cycling stem cells are lost during conventional HSC isolation, and that they can be found, in part, within the discarded Lineage positive (Lin+) population. Here we present data further characterizing the stem cell potential in the Lin+ fraction. We incubated WBM from B6.SJL mice with fluorescently tagged antibodies directed against TER119, B220, or T-cell markers (CD3, CD4, CD8), isolated the distinct Lin+ subsets by FACS, and then competitively engrafted each Lin+ subset into lethally irradiated C57BL/6 host mice. Donor chimerism and lineage specificity of donor cells in peripheral blood were analyzed by flow cytometry at 3 months. Although classically considered devoid of stem cell activity, we found that, when competed against equal numbers of C57BL/6 WBM, the TER119+ and B220+ B6.SJL donor cells contributed to 33% and 13% of the peripheral blood chimerism, respectively. In both cases, the engraftment was multi-lineage. When 70,000 T cell marker+ donor cells were competed with 300,000 C57BL/6 WBM, the donor cells contributed up to 1.6% of the peripheral blood multi-lineage chimerism. Given the size of the Lin+ fraction in WBM, such chimerism indicates a significant stem cell potential within this typically discarded population. Further time-points, secondary transplants and limited dilution studies are in progress to further define the prevalence and potency of this stem cell population. We have been testing mechanisms governing the loss of this stem cell population during HSC purification. First, we have previously shown that bulk Lin+ engraftment potential is due to cycling stem cells. We hypothesize that fluctuations in surface epitope expression with cell cycle transit render this population difficult to isolate with antibody-mediated strategies that rely on stable epitope expression. To begin testing this, we tracked the fluctuation of stem cell markers on Lin- cells in vitro. We isolated Lin- cells that were also negative for the stem cell markers c-Kit and Sca-1, placed them in liquid culture and, 18 hours later, re-assessed for stem cell marker expression by flow cytometry. We found that, although initially stem cell marker negative, up to 6%, 14%, and 2% of the Lin-/stem cell marker negative cells became positive for c-Kit alone, Sca-1 alone, or both c-Kit and Sca-1 expression, respectively. We are currently testing this population for a correlation between gain of c-Kit- and Sca-1 expression and stem cell function. Second, it is possible that there is a distinct subset of HSCs that are positive for both Lin+ markers and stem cell markers with stable stem cell capacity and that these distinct stem cells are thrown out in the process of lineage depletion. To begin testing this hypothesis, we have simultaneously stained WBM with antibodies directed against the Lin+ markers and conventional stem cell markers. Our preliminary data indicate that each Lin+ fraction tested to date has a subpopulation that is also positive for c-Kit and Sca-1. For example, 21% of CD3+ cells, 6.2% of CD4+ cells, 2.26% of CD8+ cells, 0.5% of B220+, and 0.45% of TER119+ cells express both c-Kit and Sca-1. We suspect these two populations have distinct functional phenotypes and experiments characterizing the molecular phenotype and engraftment capacity of these subpopulations are ongoing. In sum, our data indicate that stem cell purification skews isolation towards a small population of quiescent stem cells, underrepresenting a potentially large pool of actively cycling HSCs that are found within the Lin+ fraction. These data underscore the need to re-evaluate the total hematopoietic stem cell potential in marrow on a population level. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giuseppe Lia ◽  
Luisa Giaccone ◽  
Sarah Leone ◽  
Benedetto Bruno

Endothelial cell (EC) dysfunction causes a number of early and life-threatening post hematopoietic stem cell transplant (HCT) complications that result in a rapid clinical decline. The main early complications are graft-vs.-host disease (GVHD), transplant associated thrombotic microangiopathy (TA-TMA), and sinusoidal obstruction syndrome (SOS). Post-HCT endothelial dysfunction occurs as a result of chemotherapy, infections, and allogeneic reactivity. Despite major advances in transplant immunology and improvements in supportive care medicine, these complications represent a major obstacle for successful HCT. In recent years, different biomarkers have been investigated for early detection of post-transplant endothelial cell dysfunction, but few have been validated. In this review we will define GVHD, TA-TMA and SOS, summarize the current data available in HCT biomarker research and identify promising biomarkers for detection and diagnosis of early HCT complications.


Stem Cells ◽  
2007 ◽  
Vol 25 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Jennifer B. Gilner ◽  
William G. Walton ◽  
Kimberly Gush ◽  
Suzanne L. Kirby

Sign in / Sign up

Export Citation Format

Share Document