endothelial cell activation
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 114)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Christoph Kessel ◽  
Isabelle Kone-Paut ◽  
Stephanie Tellier ◽  
Alexandre Belot ◽  
Katja Masjosthusmann ◽  
...  

Abstract Purpose A recent phase II open-label study of the interleukin 1 (IL-1) receptor antagonist (IL-1Ra) anakinra in treating IVIG-resistant Kawasaki Disease (KD) patients reported promising results. Here, we aimed to characterize the immunological impact of IL-1 blockade in this unique study population. Methods Patients’ and control sera and supernatants of cells (whole blood, neutrophils, coronary artery endothelial cells) stimulated with recombinant IL-1β were analyzed for single or multiple marker (n=22) expression by ELISA or multiplexed bead array assay. Data were analyzed using unsupervised hierarchical clustering, multiple correlation and multi-comparison statistics and were compared to retrospective analyses of KD transcriptomics. Results Inflammation in IVIG-resistant KD (n=16) is hallmarked by over-expression of innate immune mediators (particularly IL-6>CXCL10>S100A12>IL-1Ra). Those as well as levels of immune or endothelial cell activation markers (sICAM-1, sVCAM-1) declined most significantly in course of anakinra treatment. Prior as well as following IL-1R blockade, over-expression of leucine-rich-α2-glycoprotein 1 (LRG1) associated best with remnant inflammatory activity and the necessity to escalate anakinra dosage and separated inflammatory KD patients from sJIA-MAS (n=13) and MIS-C (n=4). Protein as well as retrospective gene expression analyses indicated tight association of LRG1 with IL-1β signaling and neutrophilia, while particularly neutrophil stimulation with recombinant IL-1β resulted in concentration-dependent LRG1 release. Conclusion Our study identifies LRG1 as known trigger of endothelial activation and cardiac re-modelling to associate with IL-1β signaling in KD. Besides a potential patho-mechanistic implication of these findings, our data suggest blood leukocyte and neutrophil counts to best predict response to IL-1Ra treatment in IVIG-resistant KD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haifeng Wang ◽  
Daniel Balzani ◽  
Vijay Vedula ◽  
Klemens Uhlmann ◽  
Fathollah Varnik

Tissue degradation plays a crucial role in the formation and rupture of aneurysms. Using numerical computer simulations, we study the combined effects of blood flow and tissue degradation on intra-aneurysm hemodynamics. Our computational analysis reveals that the degradation-induced changes of the time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) within the aneurysm dome are inversely correlated. Importantly, their correlation is enhanced in the process of tissue degradation. Regions with a low TAWSS and a high OSI experience still lower TAWSS and higher OSI during degradation. Furthermore, we observed that degradation leads to an increase of the endothelial cell activation potential index, in particular, at places experiencing low wall shear stress. These findings are robust and occur for different geometries, degradation intensities, heart rates and pressures. We interpret these findings in the context of recent literature and argue that the degradation-induced hemodynamic changes may lead to a self-amplification of the flow-induced progressive damage of the aneurysmal wall.


2021 ◽  
Vol 8 ◽  
Author(s):  
Keman Xu ◽  
Ying Shao ◽  
Fatma Saaoud ◽  
Aria Gillespie ◽  
Charles Drummer ◽  
...  

To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.


2021 ◽  
pp. 1-8
Author(s):  
Abdulrahman Alshalani ◽  
Lisa van Manen ◽  
Margit Boshuizen ◽  
Robin van Bruggen ◽  
Jason P. Acker ◽  
...  

<b><i>Background:</i></b> Observational studies suggest that sex-mismatched transfusion is associated with increased mortality. Mechanisms driving mortality are not known but may include endothelial activation. The aim of this study is to investigate the effects of sex-mismatched red blood cell (RBC) transfusions on endothelial cell activation markers in critically ill patients. <b><i>Study Design and Methods:</i></b> In patients admitted to the intensive care unit who received a single RBC unit, blood samples were drawn before (T<sub>0</sub>), 1 h after (T<sub>1</sub>), and 24 h after transfusion (T<sub>24</sub>) for analysis of soluble syndecan-1, soluble intercellular adhesion molecule-1, soluble thrombomodulin (sTM), von Willebrand factor antigen, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα). Changes in the levels of these factors were compared between sex-matched and sex-mismatched groups. <b><i>Results:</i></b> Of 69 included patients, 32 patients were in the sex-matched and 37 patients were in the sex-mismatched group. Compared to baseline, sex-matched transfusion was associated with significant reduction in sTM level (<i>p</i> value = 0.03). Between-group comparison showed that levels of syndecan-1 and sTM were significantly higher in the sex-mismatched group compared to the sex-matched group at T<sub>24</sub> (<i>p</i> value = 0.04 and 0.01, respectively). Also, TNFα and IL-6 levels showed a statistically marginal significant increase compared to baseline in the sex-mismatched group at T<sub>24</sub> (<i>p</i> value = 0.06 and 0.05, respectively), but not in the sex-matched group. <b><i>Discussion:</i></b> Transfusion of a single sex-mismatched RBC unit was associated with higher syndecan-1 and sTM levels compared to transfusion of sex-matched RBC unit. These findings may suggest that sex-mismatched RBC transfusion is associated with endothelial activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yong Li ◽  
Qi Zhang ◽  
Na Li ◽  
Liting Ding ◽  
Jinping Yi ◽  
...  

Endothelial inflammation is a crucial event in the initiation of atherosclerosis. Here, we identify Ataxin-10 protein as a novel negative modulator of endothelial activation by suppressing IRF-1 transcription activity. The protein level of Ataxin-10 is relatively higher in human vascular endothelial cells, which can be significantly suppressed by TNF-α in both HUVECs and HLMECs. Overexpression of Ataxin-10 markedly inhibited the mRNA expressions of VCAM-1 and several cytokines including MCP-1, CXCL-1, CCL-5, and TNF-α; thus, it can also suppress monocyte adhesion to endothelial cells. Accordingly, Ataxin-10 silencing promoted endothelial inflammation. However, Ataxin-10 did not affect the MAPK/NF-κB signaling pathway stimulated by TNF-α in HUVECs. Using the yeast two-hybrid assay, we found that Ataxin-10 can directly bind to interferon regulatory factor-1 (IRF-1). Upon TNF-α stimulation, Ataxin-10 promoted the cytoplasmic localization of IRF-1, which inhibited the transcription of VCAM-1. Moreover, knockdown of IRF-1 can eliminate the effect of Ataxin-10 on the expression of VCAM-1 in HUVECs induced by TNF-α. Taken together, these results indicate that Ataxin-10 inhibits endothelial cell activation and may serve as a promising therapeutic target for some vascular inflammatory-related diseases such as atherosclerosis.


Author(s):  
Indranil Biswas ◽  
Sumith R Panicker ◽  
Hemant Giri ◽  
Xiaofeng S Cai ◽  
Alireza R Rezaie

Plasmodium falciparum (Pf)-derived histidine-rich protein II (HRPII) has been shown to inhibit heparin-dependent anticoagulant activity of antithrombin (AT) and induce inflammation in vitro and in vivo. In a recent study, we showed that HRPII interacts with the AT-binding vascular glycosaminoglycans (GAGs) to not only disrupt the barrier-permeability function of endothelial cells but also inhibit the anti-inflammatory signaling function of AT. Here we investigated the mechanisms of the pro-inflammatory function of HRPII and the protective activity of AT in cellular and animal models. We found that AT competitively inhibits the GAG-dependent HRPII-mediated activation of NF-κB and expression of intercellular cell adhesion molecule 1 (ICAM1) in endothelial cells. Furthermore, AT inhibits HRPII-mediated histone H3 citrullination and neutrophil extracellular trap (NET) formation in HL60 cells and freshly isolated human neutrophils. In vivo, HRPII induced Mac1 expression on blood neutrophils, MPO release in plasma, neutrophil infiltration and histone H3 citrullination in the lung tissues. HRPII also induced endothelial cell activation as measured by increased ICAM1 expression and elevated vascular permeability in the lungs. AT effectively inhibited HRPII-mediated neutrophil infiltration, NET formation and endothelial cell activation in vivo. AT also inhibited HRPII-meditated deposition of platelets and fibrin(ogen) in the lungs and circulating level of von Willebrand factor in the plasma. We conclude that AT exerts protective effects against pathogenic effects of Pf-derived HRPII in both cellular and animal models.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3207-3207
Author(s):  
Patrick Van Dreden ◽  
Joseph Gligorov ◽  
Evangelos Terpos ◽  
Mathieu Jamelot ◽  
Michele Sabbah ◽  
...  

Abstract Background: COVID-19 has been associated with hypercoagulability, endothelial cell injury and frequent thrombotic complications resulting both from direct effects of the virus on the endothelium and from the 'cytokine storm' resulting from the host's immune response. Since the COVID-19 vaccines have been shown to effectively prevent symptomatic infection including hospital admissions and severe disease, the risk of COVID-19-related thrombosis should be expected to (almost) disappear in vaccinated individuals. However, some rare cases of venous thrombosis have been reported in individuals vaccinated with mRNA vaccines. Thus, there is a sharp contrast between the clinical or experimental data reported in the literature on COVID-19 and on the rare thrombotic events observed after the vaccination with these vaccines. This phenomenon raised some scepticism of even some fear about the safety of these vaccines which could compromise the adhesion of the citizens in the vaccination program. Aims: We conducted a prospective observational study, to explore the impact of vaccination with the BNT162b2 (Pfizer/BioNTech) on blood hypercoagulability and endothelial cell activation and to investigate if this is modified by the presence of active cancer. Methods: In total 229 subjects were prospectively included in the study from April to June 2021. Subjects were stratified in three predefined groups: 127 vaccinated patients with active cancer (VOnco group), 72 vaccinated health care workers (VHcw group) and 30 non vaccinated health individuals (Control group). Blood samples were obtained 2 days after the administration of the first dose of BNT162b2 vaccine and collected in Vacutainer® tubes (0.109 mol/L trisodium citrate). Platelet poor plasma (PPP) was prepared by double centrifugation at 2000 g for 20 minutes at room temperature and plasma aliquots were stored at -80°C until assayed. Samples of PPP were assessed for thrombin generation (TG) with PPP-Reagent® (Thrombogram-Thrombinoscope assay with PPP-Reagent®TF 5pM), E-selectin, D-dimers, (D-Di), Tissue Factor (TFa), procoagulant phospholipid-dependent clotting time (Procag-PPL) and von Willebrand factor (vWF), thrombomodulin (TM), tissue factor pathway inhibitor (TFPI), and platelet factor 4 (PF4). All assays were from Diagnostica Stago (France). The upper and lower normal limits (UNL and LNL) for each biomarker were calculated by the mean±2SD for the control group. Results: All vaccinated subjects showed significantly increased levels of PF4 (71% &gt;UNL, p&lt;0.001), D-Dimers (74% &gt;UNL, p&lt;0.01), vWF (60% &gt;UNL, p&lt;0.01), FVIII (62% &gt;UNL, p&lt;0.01) and shorter Procoag-PPL clotting time (96% &lt;LNL, p&lt;0.001), as compared to controls. Thrombin generation showed significantly higher Peak (60% &gt;UNL, p&lt;0.01), ETP (38% &gt;UNL, p&lt;0.01) and MRI (66% &gt;UNL, p&lt;0.01) but no differences in lag-time in vaccinated subjects as compared to the control group. Vaccinated subjects did not show any increase at the levels of TFa, TFPI, TM and E-selectin in comparison with the control group. The studied biomarkers were not significantly different between the VOnco and VHcw groups. Conclusion: The ROADMAP-COVID-19-Vaccine study shows that administration of the first dose of the BNT162b2 vaccine induced significant platelet activation documented by shorter Procoag-PPL associated with increased levels of PF4. Plasma hypercoagulability was less frequent in vaccinated individuals whereas there was no evidence of significant endothelial cells activation after vaccination. Interestingly, the presence of active cancer was not associated with an enhancement of platelet activation, hypercoagulability, or endothelial cell activation after the vaccination. Probably, the generated antibodies against the spike protein or lead to platelet activation in a FcyRIIa dependent manner that results in PF4 release. The implication of the mild inflammatory reaction triggered by the vaccination could be another possible pathway leading to platelet activation. Nevertheless, vaccination does not provoke endothelial activation even in patients with cancer. The findings of the ROADMAP-COVID-19-Vaccine study support the concept administration of mRNA based vaccines does not directly cause a systematic hypercoagulability. Disclosures Gligorov: Roche-Genentech: Research Funding; Novartis: Research Funding; Onxeo: Research Funding; Daichi: Research Funding; MSD: Research Funding; Eisai: Research Funding; Genomic Heatlh: Research Funding; Ipsen: Research Funding; Macrogenics: Research Funding; Pfizer: Research Funding. Terpos: Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Genesis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Sanofi: Consultancy, Honoraria, Research Funding; GSK: Honoraria, Research Funding. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Janssen: Honoraria; Beigene: Honoraria; Takeda: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4786-4786
Author(s):  
Martin Guimond ◽  
Moutuaata Moutuou ◽  
Chinmayee Goda ◽  
Nathalie Sell ◽  
Sonu Kaylan ◽  
...  

Abstract Acute graft versus host (aGVHD) is the second cause of death after allogeneic-hematopoietic stem cell transplant (allo-HSCT) underscoring the need for novel therapies. Based on previous work that endothelial cell dysfunction is present in aGVHD and that epidermal growth factor-like domain 7 (EGFL7) plays a significant role in decreasing inflammation by repressing endothelial cell activation and T cell migration, we hypothesized that increasing EGFL7 levels after allo-HSCT will diminish the severity of aGVHD. Here, we show that treatment with recombinant EGFL7 (rEGFL7) decreases aGVHD severity and improves survival in recipient mice after allogeneic transplantation with respect to controls without affecting graft versus leukemia effect. Histopathology analysis revealed higher amount of leukocyte infiltration in both large intestine and liver of PBS group compared to rEGFL7-treated mice. Furthermore, damage to the gut was reduced in EGFL7 treated mice. Finally, we showed that rEGFL7 treatment results in higher thymocytes, T, B and dendritic cells in recipient mice after allo-HSCT. This study constitutes a proof of concept of the ability of rEGFL7 therapy to reduce GHVD severity and mortality after allo-HSCT. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2121-2121
Author(s):  
Patrick Van Dreden ◽  
Douglas D Fraser ◽  
Guillaume Voiriot ◽  
Aurélie Rousseau ◽  
Ismail Elalamy ◽  
...  

Abstract Background: In some patients, SARS-CoV-2 infection induces cytokine storm, hypercoagulability and endothelial cell activation leading to worsening of COVID-19, intubation and death. Prompt identification of patients at risk of intubation or death is un unmet need. Objective: To derive a prognostic score for the risk of intubation or death in patients with critical COVID-19 by assessing biomarkers of hypercoagulability, endothelial cell activation and inflammation and a large panel of clinical analytes. Methods: We conducted a prospective, observational monocentric study enrolling 118 patients with COVID-19 admitted in the intensive care unit. At the 1st day of ICU admission all patients were assessed for the following biomarkers : protein C, protein S, antithrombin, D-Dimer, fibrin monomers, factors VIIa, V, XII, XII, VIII, von Willebrand antigen, fibrinogen, procoagulant phospholipid dependent clotting time, TFPI, thrombomodulin, P-selectin, heparinase, microparticles exposing tissue factor, IL-6, complement C3a, C5a, thrombin generation, prothrombin time, activated partial thromboplastin time, hemogram, platelet count) and clinical predictors. The clinical outcomes were intubation and mortality during hospitalization in ICU. Results: The intubation and mortality rate were 70 % and 18% respectively. Multivariate analysis led to the derivation of the COMPASS- COVID19-ICU score composed of P-Selectin, D-Dimer, free TFPI, TF activity, IL-6 and FXII, age and duration of hospitalization. The score predicted the risk of intubation or death with high sensitivity and specificity (0.90 and 0.92, respectively). Conclusions and Relevance: Critical COVID-19 is related with severe endothelial cell activation and hypercoagulability orchestrated in the context of inflammation. The COMPASS-COVID19-ICU score is an accurate predictive model for the evaluation of the risk of mechanical ventilation and death in patients with critical COVID-19. The assessment with the COMPASS- COVID-19-ICU score is feasible in tertiary hospitals. In this context it could be placed in the diagnostic procedure of personalized medical management and prompt therapeutic intervention. Disclosures Terpos: Novartis: Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Genesis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; BMS: Honoraria; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Sanofi: Consultancy, Honoraria, Research Funding; GSK: Honoraria, Research Funding. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Beigene: Honoraria; Janssen: Honoraria.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Sébastien Pinte ◽  
Suzanne Delfortrie ◽  
Chantal Havet ◽  
Gaëlle Villain ◽  
Virginie Mattot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document