scholarly journals Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter

2011 ◽  
Vol 231 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Adam C. Vana ◽  
Shihe Li ◽  
Rachel Ribeiro ◽  
Flaubert Tchantchou ◽  
Yumin Zhang
2021 ◽  
Vol 22 (23) ◽  
pp. 12811
Author(s):  
Fucheng Luo ◽  
Zhen Zhang ◽  
Yu Luo

Promoting oligodendrocyte viability has been proposed as a therapeutic strategy for alleviating many neuronal diseases, such as multiple sclerosis and stroke. However, molecular pathways critical for oligodendrocyte survival under various stresses are still not well known. p53 is a strong tumor suppressor and regulates cell cycle, DNA repair and cell death. Our previous studies have shown that p53 plays an important role in promoting neuronal survival after insults, but its specific role in oligodendrocyte survival is not known. Here, we constructed the mice with oligodendrocyte-specific p53 loss by crossing TRP53flox/flox mice and CNP-cre mice, and found that p53 was dispensable for oligodendrocyte differentiation and myelin formation under physiological condition. In the experimental autoimmune encephalomyelitis (EAE) model, p53 loss of function, specifically in oligodendrocytes, did not affect the EAE disease severity and had no effect on demyelination in the spinal cord of the mice. Interestingly, p53 deficiency in oligodendrocytes significantly attenuated the demyelination of corpus callosum and alleviated the functional impairment of motor coordination and spatial memory in the cuprizone demyelination model. Moreover, the oligodendrocyte-specific loss of p53 provided protection against subcortical white matter damage and mitigated recognition memory impairment in mice in the white matter stroke model. These results suggest that p53 plays different roles in the brain and spinal cord or in response to various stresses. Thus, p53 may be a therapeutic target for oligodendrocyte prevention in specific brain injuries, such as white matter stroke and multiple sclerosis.


2012 ◽  
Vol 19 (6) ◽  
pp. 721-731 ◽  
Author(s):  
Nabeela Nathoo ◽  
Smriti Agrawal ◽  
Ying Wu ◽  
Sarah Haylock-Jacobs ◽  
V Wee Yong ◽  
...  

Background: Susceptibility-weighted imaging (SWI) is an iron-sensitive magnetic resonance imaging (MRI) method that has shown iron-related lesions in multiple sclerosis (MS) patients. The contribution of deoxyhemoglobin to the signals seen in SWI has not been well characterized in MS. Objectives: To determine if SWI lesions (seen as focal hypointensities) exist in the experimental autoimmune encephalomyelitis (EAE) animal model of MS, and to determine whether the lesions relate to iron deposits, inflammation, demyelination, and/or deoxyhemoglobin in the vasculature. Methods: We performed SWI on the lumbar spinal cord and cerebellum of EAE and control mice (both complete Freund’s adjuvant/pertussis toxin (CFA/PTX)-immunized and naive). We also performed SWI on mice before and after perfusion (to remove blood from vessels). SWI lesions were counted and their locations were compared to histology for iron, myelin and inflammation. Results: SWI lesions were found to exist in the EAE model. Many lesions seen by SWI were not present after perfusion, especially at the grey/white matter boundary of the lumbar spinal cord and in the cerebellum, indicating that these lesion signals were associated with deoxyhemoglobin present in the lumen of vessels. We also observed SWI lesions in the white matter of the lumbar spinal cord that corresponded to iron deposition, inflammation and demyelination. In the cerebellum, SWI lesions were present in white matter tracts, where we found histological evidence of inflammatory perivascular cuffs. Conclusions: SWI lesions exist in EAE mice. Many lesions seen in SWI were a result of deoxyhemoglobin in the blood, and so may indicate areas of hypoxia. A smaller number of SWI lesions coincided with parenchymal iron, demyelination, and/or inflammation.


2019 ◽  
Vol 26 (3) ◽  
pp. 294-303 ◽  
Author(s):  
Cassandra E Meyer ◽  
Josephine L Gao ◽  
James Ying-Jie Cheng ◽  
Mandavi R Oberoi ◽  
Hadley Johnsonbaugh ◽  
...  

Background: Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss. Objective: To uncover the mechanisms underlying the development of localized GM atrophy. Methods: We used voxel-based morphometry (VBM) to evaluate localized GM atrophy and Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) to evaluate specific pathologies in mice with experimental autoimmune encephalomyelitis (EAE). Results: We observed extensive GM atrophy throughout the cerebral cortex, with additional foci in the thalamus and caudoputamen, in mice with EAE compared to normal controls. Next, we generated pathology-specific atlases (PSAs), voxelwise mappings of the correlation between specific pathologies and localized GM atrophy. Interestingly, axonal damage (end-bulbs and ovoids) in the spinal cord strongly correlated with GM atrophy in the sensorimotor cortex of the brain. Conclusion: The combination of VBM with CLARITY in EAE can localize GM atrophy in brain that is associated with a specific pathology in spinal cord, revealing a PSA of GM loss.


Sign in / Sign up

Export Citation Format

Share Document