scholarly journals Alpha adrenergic receptor signaling in the hypothalamic paraventricular nucleus is diminished by the chronic intermittent hypoxia model of sleep apnea

2021 ◽  
Vol 335 ◽  
pp. 113517
Author(s):  
Gean Domingos-Souza ◽  
Diana Martinez ◽  
Steven Sinkler ◽  
Cheryl M. Heesch ◽  
David D. Kline
2013 ◽  
Vol 305 (12) ◽  
pp. H1772-H1780 ◽  
Author(s):  
Amanda L. Sharpe ◽  
Alfredo S. Calderon ◽  
Mary Ann Andrade ◽  
J. Thomas Cunningham ◽  
Steven W. Mifflin ◽  
...  

Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats ( n = 8 rats/group) had significantly increased hematocrit ( P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly ( P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats ( n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA ( P < 0.005) and MAP ( P < 0.05) more in CIH-exposed rats ( n = 8) than control rats ( n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more ( P < 0.05) in CIH-exposed rats than in control rats ( n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na+/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension.


2013 ◽  
Vol 305 (3) ◽  
pp. H403-H409 ◽  
Author(s):  
Amanda L. Sharpe ◽  
Mary Ann Andrade ◽  
Myrna Herrera-Rosales ◽  
Steven L. Britton ◽  
Lauren G. Koch ◽  
...  

Exposure to chronic intermittent hypoxia (CIH) is an animal model that mimics the repetitive bouts of hypoxemia experienced by humans with sleep apnea. Rats exposed to CIH develop hypertension that depends on the activation of sympathetic nerve activity (SNA). Since obesity and metabolic syndrome have been linked to neurogenic hypertension and sleep apnea, and because sleep apnea can adversely affect aerobic exercise capacity, we tested the hypothesis that rats bred for selection of low aerobic capacity running (LCR) would have a greater hypertensive response to CIH than rats bred for high aerobic capacity running (HCR). Blockade of ganglionic transmission was performed to compare the contribution of SNA to the maintenance of resting mean arterial pressure (MAP). Next, hypertensive responses to 7 days of CIH were compared across LCR and HCR rats (14–16 mo old). Finally, the contribution of the hypothalamic paraventricular nucleus (PVN) to the maintenance of SNA and hypertension after CIH was determined and compared across groups. Although LCR rats were less active and had greater body weights than HCR rats, resting MAP, the contribution of ongoing SNA to the maintenance of MAP, and hypertensive responses to CIH were similar between groups. Contrary to our hypothesis, chemical inhibition of the PVN with muscimol (1 mmol/100 nl) caused a larger fall of MAP in HCR rats than in LCR rats. We conclude that LCR rats do not have resting hypertension or an exaggerated hypertensive response to CIH. Interestingly, the maintenance of CIH hypertension in LCR rats compared with HCR rats appears less reliant on ongoing PVN neuronal activity.


Sign in / Sign up

Export Citation Format

Share Document