Comparative experimental procedures for measuring the local heat transfer coefficient during flow boiling in a microchannel

2018 ◽  
Vol 90 ◽  
pp. 231-245 ◽  
Author(s):  
Stefano Bortolin ◽  
Matteo Bortolato ◽  
Marco Azzolin ◽  
Davide Del Col
Author(s):  
D. Brutin ◽  
S. Luciani ◽  
O. Rahli ◽  
Ch. LeNiliot ◽  
L. Tadrist

We present in this paper, flow boiling results obtained during parabolic flights campaigns. The experimental aim is to obtain the local heat transfer coefficient and the influence of gravity on HFE-7100 flow boiling in minichannels. The hydraulic diameter investigated is: 0.84 mm. The influence of hypergravity and microgravity solely on the frictional pressure loss is evidenced in this paper, and explained using the flow patterns.


Author(s):  
Alberto Cavallini ◽  
Stefano Bortolin ◽  
Davide Del Col ◽  
Marko Matkovic ◽  
Luisa Rossetto

This paper describes a new experimental apparatus for the measurement of the local heat transfer coefficient during flow boiling inside a 0.96 mm internal diameter single round cross section minichannel and reports preliminary heat transfer data taken during flow boiling of R134a. As a peculiar characteristic of the present technique, the heat transfer coefficient is not measured by imposing the heat flux; instead, the boiling process is governed by controlling the inlet temperature of the heating secondary fluid. This paper also presents a methodology to determine the critical conditions during the flow boiling process when no heat flux is imposed.


Author(s):  
Ravi S. Patel ◽  
Tannaz Harirchian ◽  
Suresh V. Garimella

Experiments were conducted to determine the influence of local vapor quality on local heat transfer coefficient in flow boiling in an array of microchannels. Additionally, the variation of local heat transfer coefficient along the length and width of the microchannel heat sink for given operating conditions was investigated over a range of flow parameters. Each test piece includes a silicon parallel microchannel heat sink with 25 integrated heaters and 25 temperature sensors arranged in a 5×5 grid, allowing for uniform heat dissipation and local temperature measurements. Channel dimensions ranged from 100 μm to 400 μm in depth and 100 μm to 5850 μm in width; the working fluid for all cases was the perfluorinated dielectric liquid, FC-77. The heat transfer coefficient is found to increase with increasing vapor quality, reach a peak, and then decrease rapidly due to partial dryout on the channel walls. The vapor quality at which the peak is observed shows a strong dependence on mass flux, occurring at lower vapor qualities with increasing mass flux for fixed channel dimensions. Variations in local heat transfer coefficient across the test piece were examined both along the flow direction and in a direction transverse to it; observed trends included variations due to entrance region effects, two-phase transition, non-uniform flow distribution, and channel wall dryout.


1985 ◽  
Vol 107 (2) ◽  
pp. 321-326 ◽  
Author(s):  
E. M. Sparrow ◽  
G. T. Geiger

Wind tunnel experiments were performed to determine both the average heat transfer coefficient and the radial distribution of the local heat transfer coefficient for a circular disk facing a uniform oncoming flow. The experiments covered the range of Reynolds numbers Re from 5000 to 50,000 and were performed using the naphthalene sublimation technique. To complement the experiments, an analysis incorporating both potential flow theory and boundary layer theory was used to predict the stagnation point heat transfer. The measured average Nusselt numbers definitively resolved a deep disparity between information from the literature and yielded the correlation Nu = 1.05 Pr0.36 Re1/2. The radial distributions of the local heat transfer coefficient were found to be congruent when they were normalized by Re1/2. Furthermore, the radial profiles showed that the local coefficient takes on its minimum value at the stagnation point and increases with increasing radial distance from the center of the disk. At the outer edge of the disk, the coefficient is more than twice as large as that at the stagnation point. The theoretical predictions of the stagnation point heat transfer exceeded the experimental values by about 6 percent. This overprediction is similar to that which occurs for cylinders and spheres in crossflow.


Sign in / Sign up

Export Citation Format

Share Document