Investigation of chemical and biological properties of an acidic polysaccharide fraction from Pleurotus eous (Berk.) Sacc

2021 ◽  
pp. 101209
Author(s):  
Sasikala Gunasekaran ◽  
Sudha Govindan ◽  
Prasanna Ramani
2021 ◽  
Vol 8 ◽  
Author(s):  
Zheng Wang ◽  
Yanchen Zhao ◽  
Yan Jiang ◽  
Weihua Chu

In this study, an extracellular acidic polysaccharide (EAPS) from marine Rhodotorula sp. RY1801 was extracted, and its biological properties were investigated. EAPS is mainly composed of monosaccharides, including mannose, rhamnose, glucose, galactose, and fucose, had an average molecular weight of 5.902 × 107 Da. The results indicated that EAPS can promote the growth of Lactobacillus acidophilus and L. acidophilus plantarum. EAPS is capable of scavenging both superoxide anion and hydroxyl radicals in vitro. The highest scavenging rate of superoxide anion and hydroxyl radicals is 29 and 84%, respectively. Using in vivo model, we found that the EAPS can expand the lifespan and increase the disease resistance of Caenorhabditis elegans against Klebsiella pneumoniae infection via the DAF-2/DAF-16 pathway. These results suggested that EAPS from marine Rhodotorula sp. RY1801 could promote the growth of beneficial bacteria and can be used as an antioxidant and immunomodulator, which had considerable potential in the food and health industry.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Manol Ognyanov ◽  
Yordan Georgiev ◽  
Nadezhda Petkova ◽  
Ivan Ivanov ◽  
Ivelina Vasileva ◽  
...  

In the current study, an acidic polysaccharide from the in vitro suspension culture of Fumaria officinalis L. was obtained by extraction with 0.8% (w/v) aqueous ammonium oxalate. The polysaccharide fraction mainly consisted of galacturonic acid (41.0%), followed by galactose (7.3%) and arabinose (5.6%). This suggests the presence of arabinogalactan side chains in the rhamnogalacturonan-I segment of the studied pectin, which was mainly built up by homogalacturonan segments. The pectin was evaluated as low-methyl-esterified (45.0%) with degree of acetylation 3.4%. The polymer fraction was consisted of different molecular weight populations in the range of 6–600 kDa. The high amount of 4-L-hydroxyproline (11.7% of total protein) and the specific positive reaction to Yariv’s phenylglycoside reagent indicated the presence of an arabinogalactan protein in the cell walls. The functional properties of the polysaccharide fraction were evaluated, as it possessed better water-holding capacity than oil-holding capacity. The studied pectin demonstrated significant foaming ability and promising emulsifying properties in a concentration 1%. Therefore, the isolated polysaccharide fraction could be successfully used as emulsifier and foaming agent in food products and pharmaceutical supplements.


2019 ◽  
Vol 10 (4) ◽  
pp. 2186-2197 ◽  
Author(s):  
Daoyuan Ren ◽  
Yan Zhao ◽  
Quan Zheng ◽  
Aamina Alim ◽  
Xingbin Yang

A new acidic polysaccharide (GPTP-3) with a molecular weight of 2.49 × 106 Da was extracted and purified from Gynostemma pentaphyllum tea.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


2015 ◽  
Vol 57 ◽  
pp. 177-187 ◽  
Author(s):  
Jennifer N. Byrum ◽  
William Rodgers

Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.


Sign in / Sign up

Export Citation Format

Share Document