Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation

2018 ◽  
Vol 109 ◽  
pp. 107-121 ◽  
Author(s):  
Kshanaprava Dhalsamant ◽  
P.P. Tripathy ◽  
S.L. Shrivastava
2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Jong Chull Jo ◽  
Woong Sik Kim ◽  
Chang-Yong Choi ◽  
Yong Kab Lee

This paper addresses the numerical simulation of two-phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a computational fluid dynamics code. The shell-side flow field where a single-phase fluid flows in the downward direction is also calculated in conjunction with the tube-side two-phase flow characteristics. For the calculation of tube-side two-phase flow, the inhomogeneous two-fluid model is used. Both the Rensselaer Polytechnic Institute wall boiling model and the bulk boiling model are implemented for the numerical simulations of boiling-induced two-phase flow in a vertical straight pipe and channel, and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-ε model. From the results of the present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. In addition, the present simulation method is considered to be physically plausible in the light of discussions on the computed results.


Author(s):  
Jong Chull Jo ◽  
Woong Sik Kim ◽  
Chang-Yong Choi ◽  
Yong Kab Lee

This paper addresses the numerical simulation of two phase flow heat transfer in the helically coiled tubes of an integral type pressurized water reactor steam generator under normal operation using a CFD code. The single phase flow which flow downward direction in the shell side is also calculated together. For the calculation of tube side two-phase flow the inhomogeneous two-fluid model is used. Both the RPI (Rensselaer Polytechnic Institute) wall boiling model and the bulk boiling model are implemented for the numerical simulation and the computed results are compared with the available measured data. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. Both the internal and external turbulent flows are simulated using the standard k-ε model From the results of present numerical simulation, it is shown that the bulk boiling model can be applied to the simulation of two-phase flow in the helically coiled steam generator tubes. The results also show that the present simulation method is considered to be physically plausible when the computed results are compared with available previous experimental and numerical studies.


2019 ◽  
Vol 15 (11-12) ◽  
Author(s):  
Milad Pero ◽  
Hossein Kiani ◽  
Torstein Skåra ◽  
Dagbjørn Skipnes ◽  
Gholamreze Askari

AbstractKinetic models describing the thermal inactivation of peroxidase and degradation of broccoli (Brassica Oleracea var. Italica) color were coupled with heat transfer equation (2D conductive heat transfer in cylindrical packed broccoli samples), and their simultaneous numerical simulation followed by experimental validation was carried out. Obtained results revealed that modeling the rate constants of the reactions with log logistic equation provides a better prediction in comparison with the most popular Arrhenius equation. It was observed that processing at temperatures lower than 80 °C is not recommended for processing of broccoli due to its adverse effect on the color of samples and considerable longer process time needed for assuring sufficient inactivation of enzyme at the cold spot. Temperatures above 80 °C were suitable for this purpose because the process time needed for inactivating peroxidase at the cold spot of sample not only affected the green color of samples negatively, but oppositely it resulted in a higher greenness than the original value.


Sign in / Sign up

Export Citation Format

Share Document