Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems

2008 ◽  
Vol 107 (2) ◽  
pp. 89-101 ◽  
Author(s):  
Julie C. Dawson ◽  
David R. Huggins ◽  
Stephen S. Jones
2018 ◽  
Vol 5 (3) ◽  
pp. 79-88
Author(s):  
Chairunnisak Chairunnisak ◽  
Sugiyanta Sugiyanta ◽  
Edi Santosa

Nitrogen use efficiency (NUE) is a necessitate in order to enhance sustainable rice farming in Indonesia. Thus, objective of present research was to evaluate NUE of local and national Indonesian superior aromatic rice treated with different levels of nitrogen fertilizer (N). Planting plot was arranged using five levels of N as the main plot, i.e; 0, 45, 90, 135 and 180 kg ha-1; and two rice varieties as subplot, i.e: Sigupai Abdya (local) and Inpari 23 Bantul (national). The results showed application 180 kg N ha-1 to Sigupai  Abdya significantly increased the plant height. However, it also postponed the flowering time. Inpari 23 Bantul treated with 180 kg N ha-1 produced the highest number of tillers. Combination of 90 kg N ha-1 with Sigupai Abdya variety significantly reduced the number of empty grains. Sigupai Abdya variety has a higher number of grains per panicle and sampling plot yield than Inpari 23 Bantul, and  dosage 90 kg N ha-1 increases grain yield per clump also sampling plot yield significantly. Nitrogen at 180 kg N ha-1 made Sigupai Abdya variety has high N content and absorption N in primordia phase, and the Inpari 23 Bantul variety had grain with high N content. Nitrogen at 90 kg ha-1 caused Sigupai Abdya variety at primordia phase had NUE higher than Inpari 23 Bantul. This study showed that local variety Sigupai Abdya is suitable for development as rice with low input NKeywords: Aceh aromatic, low input, nitrogen dose, N uptake, Oryza sativa L. 


2017 ◽  
Vol 33 (5) ◽  
pp. 443-466 ◽  
Author(s):  
Hiroshi Kubota ◽  
Muhammad Iqbal ◽  
Sylvie Quideau ◽  
Miles Dyck ◽  
Dean Spaner

AbstractBetter management of synthetic nitrogen (N) fertilizers in conventional agricultural systems laid the foundation for feeding the increasing world's population since the Green Revolution. However, excessive reliance on inorganic fertilizer has resulted in environmental degradation issues. Difficulties in soil nutrition management in organic cropping systems often results in lower and variable yields, also raising questions of sustainability. Improving nitrogen use efficiency (NUE) is thus of key importance to overcome environmental concerns in conventional systems and production limitations in organic systems. The differences in the two farming systems have impacts on crop traits and N cycles, making it difficult to enhance NUE with a single strategy. Different approaches need to be adopted to improve NUE in each system. Extensive efforts have been made to better understand mechanisms to potentially improve NUE in cereal crops under both systems. This review suggests that NUE may be improved through a combination of management practices and breeding strategies specific to the management system. Diversified crop rotations with legumes are effective practices to optimize the N cycle in both conventional and organic systems. Best Management Practices coupled with nitrification inhibitors, controlled release products and split-application practices can reduce N loss in conventional systems. In organic systems, we need to take advantage of available N sources and adapt practices such as no-tillage, cover crops, and catch crops. Utilization of beneficial soil microorganisms is fundamental to optimizing availability of soil N. Estimation of soil organic matter mineralization using prediction models may be useful to enhance NUE if models are calibrated for target environments. Cereal crops are often bred under optimum N conditions and may not perform well under low N conditions. Thus, breeders can integrate genetic and phenotypic information to develop cultivars adapted to specific environments and cultivation practices. The proper choice and integration of strategies can synchronize N demand and supply within a system, resulting in reduced risk of N loss while improving NUE in both conventional and organic systems.


2021 ◽  
Author(s):  
Aman Kumar ◽  
Nitika Sandhu ◽  
Pankaj Kumar ◽  
Gomsie Pruthi ◽  
Jasneet Singh ◽  
...  

Abstract Nitrogen transport is one of the most important processes in plants mediated by specialized transmembrane proteins. Plants have two main systems for nitrogen uptake from soil and its transport within the system - a low-affinity transport system and a high-affinity transport system. Nitrate transporters are of special interest in cereal crops because large amount of money is spent on N fertilizers every year to enhance the crop productivity. Till date four gene families of nitrate transporter proteins; NPF (nitrate transporter 1/peptide transporter family), NRT2 (nitrate transporter 2 family), the CLC (chloride channel family), and the SLAC/SLAH (slow anion channel-associated homologues) have been reported in plants. In our study, in silico mining of nitrate transporter genes along with their detailed structure, phylogenetic and expression analysis was carried out. A total of 412 nitrate transporter genes were identified in hexaploid wheat genome using HMMER based homology searches in IWGSC Refseq v2.0. Out of those twenty genes were root specific, 11 leaf/shoot specific and 17 genes were grain/spike specific. The identification of nitrate transporter genes in the close proximity to the previously identified 67 marker-traits associations associated with the nitrogen use efficiency related traits in nested synthetic hexaploid wheat introgression library indicated the robustness of the reported transporter genes. The detailed crosstalk between the genome and proteome and the validation of identified putative candidate genes through expression and gene editing studies may lay down the foundation to improve nitrogen use efficiency of cereal crops.


2012 ◽  
Vol 35 (3) ◽  
pp. 428-441 ◽  
Author(s):  
Guodong Liu ◽  
Yuncong Li ◽  
Ashok K. Alva ◽  
David M. Porterfield ◽  
James Dunlop

Sign in / Sign up

Export Citation Format

Share Document