Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis

2012 ◽  
Vol 135 ◽  
pp. 10-21 ◽  
Author(s):  
Bruce A. Linquist ◽  
Maria Arlene Adviento-Borbe ◽  
Cameron M. Pittelkow ◽  
Chris van Kessel ◽  
Kees Jan van Groenigen
2020 ◽  
Author(s):  
Matthias Kuhnert ◽  
Viktoria Oliver ◽  
Andrea Volante ◽  
Stefano Monaco ◽  
Yit Arn Teh ◽  
...  

<p>Rice cultivation has high water consumption and emits large quantities of greenhouse gases. Therefore, rice fields provide great potential to mitigate GHG emissions by modifications to cultivation practices or external inputs. Previous studies showed differences for impacts of alternated wetting and drying (AWD) practices for above-ground and below-ground biomass, which might have long term impacts on soil organic carbon stocks. The objective of this study is to parameterise and evaluate the model ECOSSE for rice simulations based on data from an Italian rice test site where the effects of different water management practices and 12 common European cultivars, on yield and GHG emissions, were investigated. Special focus is on the differences of the impacts on the greenhouse gas emissions for AWD and continuous flooding (CF). The model is calibrated and tested for field measurements and is used for model experiments to explore climate change impacts and long-term effects. Long term carbon storage is of particular interest since it is a suitable mitigation strategy. As experiments showed different impacts of management practices on the below ground biomass, long term model experiments are used to estimate impacts on SOC of the different practices. The measurements also allow an analysis of the impacts of different cultivars and the uncertainty of model approaches using a single data set for calibration.</p>


2018 ◽  
Author(s):  
Femke Lutz ◽  
Tobias Herzfeld ◽  
Jens Heinke ◽  
Susanne Rolinski ◽  
Sibyll Schaphoff ◽  
...  

Abstract. The effects of tillage on soil properties (e.g. soil carbon and nitrogen), crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models are limited in simulating tillage. Hence, they do not allow for analyzing the effects of tillage and cannot evaluate, for example, reduced-tillage or no-till as mitigation practices for climate change. In this paper, we describe the implementation of tillage related practices in the global ecosystem model LPJmL. The model is subsequently evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analysis on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional patterns of carbon and water fluxes. However, modeled N-fluxes deviate from the literature and need further study. The addition of the tillage module to LPJmL 5.0 opens opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions and other environmental indicators.


2017 ◽  
Vol 64 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Estefânia Silva Camargo ◽  
Gabriel Munhoz Pedroso ◽  
Kazunori Minamikawa ◽  
Yutaka Shiratori ◽  
Cimélio Bayer

2016 ◽  
Vol 38 (3) ◽  
pp. 291 ◽  
Author(s):  
Dionne Walsh ◽  
Robyn Cowley

This paper evaluates three decades of innovation by a leading beef producer in the Barkly region of the Northern Territory. The case study represents a rare published analysis of changes in production, greenhouse gas emissions and land condition metrics for a commercial livestock business. Thirty years ago the property was under-developed and had poor livestock productivity by today’s standards. Between 1981 and 2013, the business has increased carrying capacity through water point development, and achieved a >50% increase in herd size, a 46% improvement in weaning rate, an 82% reduction in breeder mortality rate and an improvement in land condition. Annual liveweight turn-off has increased from 75 kg to 128 kg per adult equivalent (AE) carried. All of this has been achieved while using recommended stocking rates. In contrast, two additional analyses reflecting other management approaches being taken by some north Australian beef businesses resulted in poor productivity, economic, emissions and land condition outcomes. Total greenhouse gas emissions have increased on the case study property since 1981 as a result of increasing herd size. However, the intensity of emissions per tonne of liveweight sold has declined by 43% due to the improvements in livestock productivity. The potential for generating carbon revenue from this emissions intensity improvement was explored. We found that for >95% of northern beef enterprises, current project transaction costs would entirely negate carbon revenue at a carbon price of < $25 tCO2e–1. At $5 tCO2e–1, the minimum herd size needed to cover the project transaction costs would be in excess of 35 000 AE. Although substantial carbon profits appear unlikely at present, the management practices evaluated can deliver substantial economic, emissions and land condition benefits to individual businesses and the wider industry. The paper concludes that cost-effective investment to concurrently increase herd size and livestock productivity per head, in conjunction with safe stocking rate management, is a proven path to economic and environmental sustainability in the north Australian beef industry.


Sign in / Sign up

Export Citation Format

Share Document