Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats

2013 ◽  
Vol 59 ◽  
pp. 249-255 ◽  
Author(s):  
Gopalan Sriram Prasath ◽  
Sorimuthu Pillai Subramanian
Author(s):  
Hasan Haci Yeter ◽  
Berfu Korucu ◽  
Elif Burcu Bali ◽  
Ulver Derici

Abstract. Background: The pathophysiological basis of chronic kidney disease and its complications, including cardiovascular disease, are associated with chronic inflammation and oxidative stress. We investigated the effects of active vitamin D (calcitriol) and synthetic vitamin D analog (paricalcitol) on oxidative stress in hemodialysis patients. Methods: This cross-sectional study was composed of 83 patients with a minimum hemodialysis vintage of one year. Patients with a history of any infection, malignancy, and chronic inflammatory disease were excluded. Oxidative markers (total oxidant and antioxidant status) and inflammation markers (C-reactive protein and interleukin-6) were analyzed. Results: A total of 47% (39/83) patients were using active or analog vitamin D. Total antioxidant status was significantly higher in patients with using active or analog vitamin D than those who did not use (p = 0.006). Whereas, total oxidant status and oxidative stress index were significantly higher in patients with not using vitamin D when compared with the patients who were using vitamin D preparation (p = 0.005 and p = 0.004, respectively). On the other hand, total antioxidant status, total oxidant status, and oxidative stress index were similar between patients who used active vitamin D or vitamin D analog (p = 0.6; p = 0.4 and p = 0.7, respectively). Conclusion: The use of active or selective vitamin D analog in these patients decreases total oxidant status and increases total antioxidant status. Also, paricalcitol is as effective as calcitriol in decreasing total oxidant status and increasing total antioxidant status in patients with chronic kidney disease.


Signals ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 138-158
Author(s):  
Hsiang-Wei Wang ◽  
Cameron Bringans ◽  
Anthony J. R. Hickey ◽  
John A. Windsor ◽  
Paul A. Kilmartin ◽  
...  

Oxidative stress plays a pivotal role in the pathogenesis of many diseases, but there is no accurate measurement of oxidative stress or antioxidants that has utility in the clinical setting. Cyclic Voltammetry is an electrochemical technique that has been widely used for analyzing redox status in industrial and research settings. It has also recently been applied to assess the antioxidant status of in vivo biological samples. This systematic review identified 38 studies that used cyclic voltammetry to determine the change in antioxidant status in humans and animals. It focusses on the methods for sample preparation, processing and storage, experimental setup and techniques used to identify the antioxidants responsible for the voltammetric peaks. The aim is to provide key information to those intending to use cyclic voltammetry to measure antioxidants in biological samples in a clinical setting.


2020 ◽  
Vol 245 (14) ◽  
pp. 1260-1267
Author(s):  
Sylwia Dzięgielewska-Gęsiak ◽  
Dorota Stołtny ◽  
Alicja Brożek ◽  
Małgorzata Muc-Wierzgoń ◽  
Ewa Wysocka

Insulin resistance (IR) may be associated with oxidative stress and leads to cardiovascular disorders. Current research focuses on interplay between insulin-resistance indices and oxidant-antioxidant markers in elderly individuals with or without insulin-resistance. The assessment involved anthropometric data (weight, height, BMI, percentage of body fat (FAT)) and biochemical tests (glucose, lipids, serum insulin and plasma oxidant-antioxidant markers: Thiobarbituric Acid-Reacting Substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1) and total antioxidant status). Insulin resistance index (IR) assuming a cut-off point of 0.3 allows to divides groups into: insulin sensitive group (InsS) IR < 0,3 ( n = 35, median age 69.0 years) and insulin-resistant group (InsR) IR ≥ 0.3 ( n = 51, median age 71.0 years). Lipids and antioxidant defense system markers did not differentiate the investigated groups. In the InsR elderly group, the FAT was increased ( P < 0.000003) and TBARS ( P = 0.008) concentration decreased in comparison with InsS group. A positive correlation for SOD-1 and total antioxidant status ( P < 0.05; r =  0.434) and a negative correlation for TBARS and age ( P < 0.05 with r = −0.421) were calculated in InsR individuals. In elderly individuals, oxidative stress persists irrespective of insulin-resistance status. We suggest that increased oxidative stress may be consequence of old age. An insulin action identifies those at high risk for atherosclerosis, via congruent associations with oxidative stress and extra- and intra-cellular antioxidant defense systems. Thus, we maintain that insulin-resistance is not the cause of aging. Impact statement Insulin resistance is associated with oxidative stress leading to cardiovascular diseases. However, little research has been performed examining elderly individuals with or without insulin-resistance. We demonstrate that antioxidant defense systems alone is not able to abrogate insulin action in elderly individuals at high risk for atherosclerosis, whereas the combined oxidant-antioxidant markers (thiobarbituric acid-reacting substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1), and total antioxidant status (TAS)) might be more efficient and perhaps produce better clinical outcome. In fact, a decrease in oxidative stress and strong interaction between antioxidant defense can be seen only among insulin-resistant elderly individuals. This is, in our opinion, valuable information for clinicians, since insulin-resistance is considered strong cardiovascular risk factor.


2009 ◽  
Vol 27 (6) ◽  
pp. 358-363 ◽  
Author(s):  
Ramalingam Mahesh ◽  
Shanmugham Bhuvana ◽  
Vava Mohaideen Hazeena Begum

Sign in / Sign up

Export Citation Format

Share Document