Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length

2020 ◽  
Vol 135 ◽  
pp. 111015 ◽  
Author(s):  
Xiaoxing Liang ◽  
Nuoya Yin ◽  
Shengxian Liang ◽  
Renjun Yang ◽  
Shuyu Liu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surangrat Thongkorn ◽  
Songphon Kanlayaprasit ◽  
Pawinee Panjabud ◽  
Thanit Saeliw ◽  
Thanawin Jantheang ◽  
...  

AbstractOur recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.


Author(s):  
E. G. Rightor ◽  
G. P. Young

Investigation of neat polymers by TEM is often thwarted by their sensitivity to the incident electron beam, which also limits the usefulness of chemical and spectroscopic information available by electron energy loss spectroscopy (EELS) for these materials. However, parallel-detection EELS systems allow reduced radiation damage, due to their far greater efficiency, thereby promoting their use to obtain this information for polymers. This is evident in qualitative identification of beam sensitive components in polymer blends and detailed investigations of near-edge features of homopolymers.Spectra were obtained for a poly(bisphenol-A carbonate) (BPAC) blend containing poly(tetrafluoroethylene) (PTFE) using a parallel-EELS and a serial-EELS (Gatan 666, 607) for comparison. A series of homopolymers was also examined using parallel-EELS on a JEOL 2000FX TEM employing a LaB6 filament at 100 kV. Pure homopolymers were obtained from Scientific Polymer Products. The PTFE sample was commercial grade. Polymers were microtomed on a Reichert-Jung Ultracut E and placed on holey carbon grids.


2011 ◽  
pp. 053111130856
Author(s):  
Stephen Ritter
Keyword(s):  

2011 ◽  
pp. 062311292128
Author(s):  
Erika Gebel
Keyword(s):  

2018 ◽  
Vol 13 (1) ◽  
pp. 112-116 ◽  
Author(s):  
Yanling Hu ◽  
Chun Deng ◽  
Yu He ◽  
Yili Ge ◽  
Gongwu Song

2013 ◽  
Author(s):  
Anna Kjerstine Rosenmai ◽  
Camilla Taxvig ◽  
Anne Marie Vinggaard ◽  
Marianne Dybdahl ◽  
Gitte Alsing Petersen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document