The PPARδ agonist, GW501516, promotes fatty acid oxidation but has no direct effect on glucose utilisation or insulin sensitivity in rat L6 skeletal muscle cells

FEBS Letters ◽  
2007 ◽  
Vol 581 (24) ◽  
pp. 4743-4748 ◽  
Author(s):  
Nikolaos Dimopoulos ◽  
Maria Watson ◽  
Charlotte Green ◽  
Harinder S. Hundal
2009 ◽  
Vol 50 (9) ◽  
pp. 1789-1799 ◽  
Author(s):  
David Sebastián ◽  
Maria Guitart ◽  
Celia García-Martínez ◽  
Caroline Mauvezin ◽  
Josep M. Orellana-Gavaldà ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1560-1569 ◽  
Author(s):  
Teresa Coll ◽  
David Álvarez-Guardia ◽  
Emma Barroso ◽  
Anna Maria Gómez-Foix ◽  
Xavier Palomer ◽  
...  

Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-κB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Cθ (PKCθ) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-δ (PPARδ) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARδ agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser307 and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARδ antagonist GSK0660. Treatment with the PPARδ agonist enhanced the expression of two well known PPARδ target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCθ activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARδ activation by GW501516 blocked palmitate-induced NF-κB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARδ attenuates fatty acid-induced NF-κB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARδ activation as a pharmacological target to prevent insulin resistance.


2017 ◽  
Vol 103 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Timothy P Gavin ◽  
Jacob M Ernst ◽  
Hyo-Bum Kwak ◽  
Sarah E Caudill ◽  
Melissa A Reed ◽  
...  

Abstract Context Almost 50% of type 2 diabetic (T2D) patients are poorly controlled [glycated hemoglobin (HbA1c) ≥ 7%]; however, the mechanisms responsible for progressively worsening glycemic control are poorly understood. Lower skeletal muscle mitochondrial respiratory capacity is associated with low insulin sensitivity and the development of T2D. Objective We investigated if skeletal muscle insulin sensitivity (SI) was different between well-controlled T2D (WCD) and poorly controlled T2D (PCD) and if the difference was associated with differences resulting from mitochondrial respiratory function. Design Vastus lateralis muscle mitochondrial respiration, mitochondrial content, mitochondrial enzyme activity, and fatty acid oxidation (FAO) were measured. SI and the acute response to glucose (AIRg) were calculated by MINMOD analysis from glucose and insulin obtained during a modified, frequently sampled, intravenous glucose tolerance test. Results SI and AIRg were lower in PCD than WCD. Muscle incomplete FAO was greater in PCD than WCD and greater incomplete FAO was associated with lower SI and higher HbA1c. Hydroxyacyl-coenzyme A dehydrogenase expression and activity were greater in PCD than WCD. There was no difference in maximal mitochondrial respiration or content between WCD and PCD. Conclusion The current results suggest that greater skeletal muscle incomplete FAO in poorly controlled T2D is due to elevated β oxidation and is associated with worsening muscle SI.


Sign in / Sign up

Export Citation Format

Share Document