Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation

Metabolism ◽  
2006 ◽  
Vol 55 (12) ◽  
pp. 1637-1644 ◽  
Author(s):  
Ian J. Sipula ◽  
Nicholas F. Brown ◽  
German Perdomo
2009 ◽  
Vol 50 (9) ◽  
pp. 1789-1799 ◽  
Author(s):  
David Sebastián ◽  
Maria Guitart ◽  
Celia García-Martínez ◽  
Caroline Mauvezin ◽  
Josep M. Orellana-Gavaldà ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1560-1569 ◽  
Author(s):  
Teresa Coll ◽  
David Álvarez-Guardia ◽  
Emma Barroso ◽  
Anna Maria Gómez-Foix ◽  
Xavier Palomer ◽  
...  

Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-κB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Cθ (PKCθ) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-δ (PPARδ) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARδ agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser307 and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARδ antagonist GSK0660. Treatment with the PPARδ agonist enhanced the expression of two well known PPARδ target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCθ activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARδ activation by GW501516 blocked palmitate-induced NF-κB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARδ attenuates fatty acid-induced NF-κB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARδ activation as a pharmacological target to prevent insulin resistance.


1993 ◽  
Vol 265 (4) ◽  
pp. E592-E600 ◽  
Author(s):  
A. B. Jenkins ◽  
L. H. Storlien ◽  
G. J. Cooney ◽  
G. S. Denyer ◽  
I. D. Caterson ◽  
...  

We examined the effect of the long-chain fatty acid oxidation blocker methyl palmoxirate (methyl 2-tetradecyloxiranecarboxylate, McN-3716) on glucose metabolism in conscious rats. Fasted animals [5 h with or without hyperinsulinemia (100 mU/l) and 24 h] received methyl palmoxirate (30 or 100 mg/kg body wt po) or vehicle 30 min before a euglycemic glucose clamp. Whole body and tissue-specific glucose metabolism were calculated from 2-deoxy-[3H]-glucose kinetics and accumulation. Oxidative metabolism was assessed by respiratory gas exchange in 24-h fasted animals. Pyruvate dehydrogenase complex activation was determined in selected tissues. Methyl palmoxirate suppressed whole body lipid oxidation by 40-50% in 24-h fasted animals, whereas carbohydrate oxidation was stimulated 8- to 10-fold. Whole body glucose utilization was not significantly affected by methyl palmoxirate under any conditions; hepatic glucose output was suppressed only in the predominantly gluconeogenic 24-h fasted animals. Methyl palmoxirate stimulated glucose uptake in heart in 24-h fasted animals [15 +/- 5 vs. 220 +/- 28 (SE) mumol x 100 g-1 x min-1], with smaller effects in 5-h fasted animals with or without hyperinsulinemia. Methyl palmoxirate induced significant activation of pyruvate dehydrogenase in heart in the basal state, but not during hyperinsulinemia. In skeletal muscles, methyl palmoxirate suppressed glucose utilization in the basal state but had no effect during hyperinsulinemia; pyruvate dehydrogenase activation in skeletal muscle was not affected by methyl palmoxirate under any conditions. The responses in skeletal muscle are consistent with the operation of a mechanism similar to the Pasteur effect.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document