scholarly journals Regulation of voltage-gated K+channels by glucose metabolism in pancreatic β-cells

FEBS Letters ◽  
2009 ◽  
Vol 583 (13) ◽  
pp. 2225-2230 ◽  
Author(s):  
Masashi Yoshida ◽  
Katsuya Dezaki ◽  
Shiho Yamato ◽  
Atsushi Aoki ◽  
Hitoshi Sugawara ◽  
...  
Endocrinology ◽  
2006 ◽  
Vol 147 (3) ◽  
pp. 1527-1535 ◽  
Author(s):  
Mathew Daunt ◽  
Oliver Dale ◽  
Paul A. Smith

Somatostatin potently inhibits insulin secretion from pancreatic β-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in β-cells was monitored by measuring changes in the O2 consumption (ΔO2) of isolated mouse islets and MIN6 cells, a murine-derived β-cell line. In both models, glucose-stimulated ΔO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated ΔO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 ± 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 μm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on ΔO2. The nutrient secretagogues, methylpyruvate (10 mm) and α-ketoisocaproate (20 mm), also stimulated ΔO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine β-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.


2020 ◽  
Vol 11 (10) ◽  
pp. 8893-8904
Author(s):  
Tao Bai ◽  
Huanhuan Yang ◽  
Hui Wang ◽  
Linping Zhi ◽  
Tao Liu ◽  
...  

Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.


1991 ◽  
Vol 1092 (3) ◽  
pp. 347-349 ◽  
Author(s):  
Carina Ämmälä ◽  
Krister Bokvist ◽  
Sheila Galt ◽  
Patrik Rorsman

2005 ◽  
Vol 567 (1) ◽  
pp. 159-175 ◽  
Author(s):  
James Herrington ◽  
Manuel Sanchez ◽  
Denize Wunderler ◽  
Lizhen Yan ◽  
Randal M. Bugianesi ◽  
...  

Endocrinology ◽  
1998 ◽  
Vol 139 (3) ◽  
pp. 993-998 ◽  
Author(s):  
Jean-Claude Henquin

Glucose stimulation of pancreatic β-cells triggers electrical activity (slow waves of membrane potential with superimposed spikes) that is best monitored with intracellular microelectrodes. Closure of ATP-sensitive K+ channels underlies the depolarization to the threshold potential and participates in the increase in electrical activity produced by suprathreshold (>7 mm) concentrations of glucose, but it is still unclear whether this is the sole mechanism of control. This was investigated by testing whether blockade of ATP-sensitive K+ channels by low concentrations of tolbutamide is able to mimic the effects of glucose on mouse β-cell electrical activity even in the absence of the sugar. The response to tolbutamide was influenced by the duration of the perifusion with the low glucose medium. Tolbutamide (25 μm) caused a rapid and sustained depolarization with continuous activity after 6 min of perifusion of the islet with 3 mm glucose, and a progressive depolarization with slow waves of the membrane potential after 20 min. In the absence of glucose, the β-cell response to tolbutamide was a transient phase of depolarization with rare slow waves (6 min) or a silent, small, but sustained, depolarization (20 min). Readministration of 3 mm glucose was sufficient to restore slow waves, whereas an increase in the glucose concentration to 5 and 7 mm was followed by a lengthening of the slow waves and a shortening of the intervals. In contrast, induction of slow waves by tolbutamide proved very difficult in the absence of glucose, because the β-cell membrane tended to depolarize from a silent level to the plateau level, at which electrical activity is continuous. Azide, a mitochondrial poison, abrogated the electrical activity induced by tolbutamide in the absence of glucose, which demonstrates the influence of the metabolism of endogenous fuels on the response to the sulfonylurea. The partial repolarization that azide also produced was reversed by increasing the concentration of tolbutamide, but reappearance of the spikes required the addition of glucose. It is concluded that inhibition of ATP-sensitive K+ channels is not the only mechanism by which glucose controls electrical activity inβ -cells.


2015 ◽  
Vol 7 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Hiroki Sato ◽  
Kazuaki Nagashima ◽  
Masahito Ogura ◽  
Yuichi Sato ◽  
Yumiko Tahara ◽  
...  

FEBS Letters ◽  
1990 ◽  
Vol 261 (1) ◽  
pp. 5-7 ◽  
Author(s):  
C. Peers ◽  
P.A. Smith ◽  
P.C.G. Nye

Sign in / Sign up

Export Citation Format

Share Document