scholarly journals A Minimum of Fuel Is Necessary for Tolbutamide to Mimic the Effects of Glucose on Electrical Activity in Pancreatic β-Cells*

Endocrinology ◽  
1998 ◽  
Vol 139 (3) ◽  
pp. 993-998 ◽  
Author(s):  
Jean-Claude Henquin

Glucose stimulation of pancreatic β-cells triggers electrical activity (slow waves of membrane potential with superimposed spikes) that is best monitored with intracellular microelectrodes. Closure of ATP-sensitive K+ channels underlies the depolarization to the threshold potential and participates in the increase in electrical activity produced by suprathreshold (>7 mm) concentrations of glucose, but it is still unclear whether this is the sole mechanism of control. This was investigated by testing whether blockade of ATP-sensitive K+ channels by low concentrations of tolbutamide is able to mimic the effects of glucose on mouse β-cell electrical activity even in the absence of the sugar. The response to tolbutamide was influenced by the duration of the perifusion with the low glucose medium. Tolbutamide (25 μm) caused a rapid and sustained depolarization with continuous activity after 6 min of perifusion of the islet with 3 mm glucose, and a progressive depolarization with slow waves of the membrane potential after 20 min. In the absence of glucose, the β-cell response to tolbutamide was a transient phase of depolarization with rare slow waves (6 min) or a silent, small, but sustained, depolarization (20 min). Readministration of 3 mm glucose was sufficient to restore slow waves, whereas an increase in the glucose concentration to 5 and 7 mm was followed by a lengthening of the slow waves and a shortening of the intervals. In contrast, induction of slow waves by tolbutamide proved very difficult in the absence of glucose, because the β-cell membrane tended to depolarize from a silent level to the plateau level, at which electrical activity is continuous. Azide, a mitochondrial poison, abrogated the electrical activity induced by tolbutamide in the absence of glucose, which demonstrates the influence of the metabolism of endogenous fuels on the response to the sulfonylurea. The partial repolarization that azide also produced was reversed by increasing the concentration of tolbutamide, but reappearance of the spikes required the addition of glucose. It is concluded that inhibition of ATP-sensitive K+ channels is not the only mechanism by which glucose controls electrical activity inβ -cells.

1999 ◽  
Vol 114 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Sven O. Göpel ◽  
Takahiro Kanno ◽  
Sebastian Barg ◽  
Lena Eliasson ◽  
Juris Galvanovskis ◽  
...  

We have applied the perforated patch whole-cell technique to β cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K+ conductance. The current was dependent on Ca2+ influx but unaffected by apamin and charybdotoxin, two blockers of Ca2+-activated K+ channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K+ channels) but partially (>60%) blocked by high (10–20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca2+-activated K+ current plays an important role in the generation of oscillatory electrical activity in the β cell.


2007 ◽  
Vol 293 (6) ◽  
pp. C1924-C1933 ◽  
Author(s):  
Leonid E. Fridlyand ◽  
Mark C. Harbeck ◽  
Michael W. Roe ◽  
Louis H. Philipson

In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic β-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic β-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca2+) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca2+ oscillations in the β-cell. Slow Ca2+ oscillations (<1 min−1) produce low-frequency cAMP oscillations, and faster Ca2+ oscillations (>3–4 min−1) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca2+ oscillations. In contrast, observed antiphasic Ca2+ and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca2+-dependent AC and PDE activation in coupling of Ca2+ and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 β-cells.


2011 ◽  
Vol 25 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Claire E. Moore ◽  
Omotola Omikorede ◽  
Edith Gomez ◽  
Gary B. Willars ◽  
Terence P. Herbert

Abstract Protein kinase R-like ER kinase (PERK) is activated at physiologically low glucose concentrations in pancreatic β-cells. However, the molecular mechanisms by which PERK is activated under these conditions and its role in β-cell function are poorly understood. In this report, we investigated, in dispersed rat islets of Langerhans and mouse insulinoma-6 (MIN6) cells, the relationship between extracellular glucose concentration, the free endoplasmic reticulum (ER) calcium concentration ([Ca2+]ER) measured directly using an ER targeted fluorescence resonance energy transfer-based calcium sensor, and the activation of PERK. We found that a decrease in glucose concentration leads to a concentration-dependent reduction in [Ca2+]ER that parallels the activation of PERK and the phosphorylation of its substrate eukaryotic initiation factor-2α. We provide evidence that this decrease in [Ca2+]ER is caused by a decrease in sarcoplasmic/ER Ca2+-ATPase pump activity mediated by a reduction in the energy status of the cell. Importantly, we also report that PERK-dependent eukaryotic initiation factor-2α phosphorylation at low glucose concentration plays a significant role in 1) the regulation of both proinsulin and global protein synthesis, 2) cell viability, and 3) conferring preemptive cytoprotection against ER stress. Taken together, these results provide evidence that a decrease in the ATP/energy status of the cell in response to a decrease in glucose concentration results in sarcoplasmic/ER Ca2+-ATPase pump inhibition, the efflux of Ca2+ from the ER, and the activation of PERK, which plays an important role in both pancreatic β-cell function and survival.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Tamara Theiner ◽  
Noelia Jacobo-Piqueras ◽  
Nadine J. Ortner ◽  
Stefanie M. Geisler ◽  
Petronel Tuluc

Pancreatic β cells express several high voltage-gated Ca2+ channel (HVCC) isoforms critical for insulin release, cell differentiation, and survival. RNaseq and qPCR analyses demonstrated that CACNA1D gene encoding for CaV1.3-α1D isoform is highly expressed in pancreatic islets of both mice and men. Additionally, CACNA1D genetic polymorphisms were associated with increased susceptibility for diabetes while CaV1.3 gain-of-function mutations cause hyperinsulinemia in humans. Nevertheless, functional evidence for the role of CaV1.3 on β-cell electrical activity, insulin release, and β-cell mass is contradictory and largely unknown. Here, we show that CaV1.3 deletion led to a sixfold increase in DNA damage and a threefold decrease in proliferation markers in pancreatic β cells of 14-d-old mice, while adult mice were largely unaffected. However, β-cell mass was reduced by ∼20% in both young and old mice, resulting in a diminished sustained insulin release. Voltage-clamp recordings in β-cells of 14-d-old mice showed an ∼20% reduction in total Ca2+ influx (WT Ipeak = −19.76 ± 1.04 pA/pF; CaV1.3−/− Ipeak = −14.84 ± 0.61 pA/pF, P = 0.001) accompanied by slower inactivation and an ∼5 mV rightwards shift in the voltage dependence of activation (WT V1/2 = −7.71 ± 0.82 mV; CaV1.3−/− V1/2 = −2.32 ± 1.09 mV, P = 0.0003). Although to a lower extent, Ca2+ influx in adult CaV1.3−/− β cells was similarly affected. Moreover, current-clamp recordings showed that CaV1.3 deletion delayed the glucose-induced action potential (AP) onset, reduced AP firing frequency (e.g., at 7.5 mM glucose, WT = 4.3 Hz; CaV1.3−/− = 2.1 Hz, P = 0.001) and AP-train frequency (e.g., at 7.5 mM glucose intertrain interval, WT = 49.3 ± 9.6 s; CaV1.3−/− = 120.3 ± 25.5 s, P = 0.04) in both young and adult β cells. Therefore, our data demonstrate that the CaV1.3 channel is required for the initiation of glucose-induced β-cell electrical activity and modulates β-cell mass and insulin release in both young and old mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.


2008 ◽  
Vol 197 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Hasan Kulaksiz ◽  
Evelyn Fein ◽  
Peter Redecker ◽  
Wolfgang Stremmel ◽  
Guido Adler ◽  
...  

Body iron is involved in various vital functions. Its uptake in the intestine is regulated by hepcidin, a bioactive peptide originally identified in plasma and urine and subsequently in the liver. In the present study, we provide evidence at the transcriptional and translational levels that hepcidin is also expressed in the pancreas of rat and man. Immunohistochemical studies localized the peptide exclusively to β-cells of the islets of Langerhans. Immunoelectron microscopical analyses revealed that hepcidin is confined to the insulin-storing β-cell secretory granules. As demonstrated in insulinoma-derived RINm5F cells, the expression of hepcidin in β-cells is regulated by iron. Based on the present findings we conclude that pancreatic islets are an additional source of the peptide hepcidin. The localization of this peptide to β-cells suggests that pancreatic β-cells may be involved in iron metabolism in addition to their genuine function in blood glucose regulation. In view of the various linked iron/glucose disorders in the pancreas, the present findings may provide an insight into the phenomenology of intriguing mutual relationships between iron and glucose metabolisms.


FEBS Letters ◽  
2009 ◽  
Vol 583 (13) ◽  
pp. 2225-2230 ◽  
Author(s):  
Masashi Yoshida ◽  
Katsuya Dezaki ◽  
Shiho Yamato ◽  
Atsushi Aoki ◽  
Hitoshi Sugawara ◽  
...  

2021 ◽  
Author(s):  
Zehua Liu ◽  
Bo Li

Recent studies support the view that highland barley as whole grain diet showed anti-hyperglycemic effects, while little information is available about the active compounds that could ameliorate pancreatic β cells...


Sign in / Sign up

Export Citation Format

Share Document