Follicular-fluid soluble amyloid precursor protein levels are increased among women with polycystic ovarian syndrome undergoing IVF

2014 ◽  
Vol 102 (3) ◽  
pp. e261-e262
Author(s):  
S.-L. Chen ◽  
P. Li ◽  
F.-H. Duan ◽  
X. Chen ◽  
J. Niu
2006 ◽  
Vol 23 (9) ◽  
pp. 772-775 ◽  
Author(s):  
J. Kálmán ◽  
M. Palotás ◽  
M. Pákáski ◽  
M. Hugyecz ◽  
Z. Janka ◽  
...  

2009 ◽  
Vol 111 (4) ◽  
pp. 741-752 ◽  
Author(s):  
Yu Zhen ◽  
Yuanlin Dong ◽  
Xu Wu ◽  
Zhipeng Xu ◽  
Yan Lu ◽  
...  

Background Some anesthetics have been suggested to induce neurotoxicity, including promotion of Alzheimer's disease neuropathogenesis. Nitrous oxide and isoflurane are common anesthetics. The authors set out to assess the effects of nitrous oxide and/or isoflurane on apoptosis and beta-amyloid (Abeta) levels in H4 human neuroglioma cells and primary neurons from naïve mice. Methods The cells or neurons were exposed to 70% nitrous oxide and/or 1% isoflurane for 6 h. The cells or neurons and conditioned media were harvested at the end of the treatment. Caspase-3 activation, apoptosis, processing of amyloid precursor protein, and Abeta levels were determined. Results Treatment with a combination of 70% nitrous oxide and 1% isoflurane for 6 h induced caspase-3 activation and apoptosis in H4 naïve cells and primary neurons from naïve mice. The 70% nitrous oxide plus 1% isoflurane, but neither alone, for 6 h induced caspase-3 activation and apoptosis, and increased levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in H4-amyloid precursor protein cells. In addition, the nitrous oxide plus isoflurane-induced Abeta generation was reduced by a broad caspase inhibitor, Z-VAD. Finally, the nitrous oxide plus isoflurane-induced caspase-3 activation was attenuated by gamma-secretase inhibitor L-685,458, but potentiated by exogenously added Abeta. Conclusion These results suggest that the common anesthetics nitrous oxide plus isoflurane may promote neurotoxicity by inducing apoptosis and increasing Abeta levels. The generated Abeta may further potentiate apoptosis to form another round of apoptosis and Abeta generation. More studies, especially the in vivo confirmation of these in vitro findings, are needed.


2020 ◽  
Vol 114 (3) ◽  
pp. e543-e544
Author(s):  
Tamar Matitashvili ◽  
Sezgi Arpag ◽  
Seifeldin Sadek ◽  
Gerard Celia ◽  
Laurel Stadtmauer ◽  
...  

2013 ◽  
Vol 288 (37) ◽  
pp. 26668-26677 ◽  
Author(s):  
Hongjie Wang ◽  
Debleena Dey ◽  
Ivan Carrera ◽  
Dmitriy Minond ◽  
Elisabetta Bianchi ◽  
...  

2020 ◽  
Vol 114 (3) ◽  
pp. e398-e399
Author(s):  
Lauren Rouleau ◽  
Anna K. Knight ◽  
Sabrina A. Gerkowicz ◽  
Shang Weirong ◽  
Laurie J. McKenzie ◽  
...  

2017 ◽  
Vol 39 (6) ◽  
pp. 1085-1098
Author(s):  
Tongrong He ◽  
Ruohan Sun ◽  
Anantha VR Santhanam ◽  
Livius V d'Uscio ◽  
Tong Lu ◽  
...  

The mechanisms underlying dysfunction of cerebral microvasculature induced by type 1 diabetes (T1D) are not fully understood. We hypothesized that in cerebral microvascular endothelium, α-processing of amyloid precursor protein (APP) is impaired by T1D. In cerebral microvessels derived from streptozotocin (STZ)-induced T1D mice protein levels of APP and its α-processing enzyme, a disintegrin and metalloprotease 10 (ADAM10) were significantly decreased, along with down-regulation of adenylate cyclase 3 (AC3) and enhanced production of thromboxane A2 (TXA2). In vitro studies in human brain microvascular endothelial cells (BMECs) revealed that knockdown of AC3 significantly suppressed ADAM10 protein levels, and that activation of TXA2 receptor decreased APP expression. Furthermore, levels of soluble APPα (sAPPα, a product of α-processing of APP) were significantly reduced in hippocampus of T1D mice. In contrast, amyloidogenic processing of APP was not affected by T1D in both cerebral microvessels and hippocampus. Most notably, studies in endothelial specific APP knockout mice established that genetic inactivation of APP in endothelium was sufficient to significantly reduce sAPPα levels in the hippocampus. In aggregate, our findings suggest that T1D impairs non-amyloidogenic processing of APP in cerebral microvessels. This may exert detrimental effect on local concentration of neuroprotective molecule, sAPPα, in the hippocampus.


2017 ◽  
Vol 235 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Joshua A Kulas ◽  
Kendra L Puig ◽  
Colin K Combs

The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aβ), a plaque-forming peptide in Alzheimer’s disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aβ. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP−/− and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.


Sign in / Sign up

Export Citation Format

Share Document