scholarly journals Use of luteinizing hormone supplementation for ovarian stimulation in IVF/ICSI cycles of women with good ovarian reserve

2019 ◽  
Vol 112 (3) ◽  
pp. e222
Author(s):  
Liang Hsuan Chen ◽  
Tzu-Hsuan Chin ◽  
Ya-Chiung Hsu ◽  
Shang Yu Huang ◽  
Hsing-Tse Yu ◽  
...  
Author(s):  
Shun-Long Weng ◽  
Shu-Ling Tzeng ◽  
Chun-I Lee ◽  
Chung-Hsien Liu ◽  
Chun-Chia Huang ◽  
...  

The choice of ovarian stimulation protocols in assisted reproduction technology (ART) cycles for low ovarian reserve patients is challenging. Our previous report indicated that the gonadotrophin-releasing (GnRH) agonist (GnRHa) protocol is better than the GnRH antagonist (GnRHant) protocol for young age poor responders. Here, we recruited 269 patients with anti-Müllerian hormone (AMH) < 1.2 ng/mL undergoing their first ART cycles for this nested case-control study. We investigated the genetic variants of the relevant genes, including follicular stimulating hormone receptor (FSHR; rs6166), AMH (rs10407022), GnRH (rs6185), and GnRH receptor (GnRHR; rs3756159) in patients <35 years (n = 86) and patients ≥35 years of age (n = 183). Only the genotype of GnRHR (rs3756159) is distributed differently in young (CC 39.5%, CT/TT 60.5%) versus advanced (CC 24.0%, CT/TT 76.0%) age groups (recessive model, p = 0.0091). Furthermore, the baseline luteinizing hormone (LH) levels (3.60 (2.45 to 5.40) vs. 4.40 (2.91 to 6.48)) are different between CC and CT/TT genotype of GnRHR (rs3756159). In conclusion, the genetic variants of GnRHR (rs3756159) could modulate the release of LH in the pituitary gland and might then affect the outcome of ovarian stimulation by GnRHant or GnRHa protocols for patients with low AMH levels.


2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Dragos Albu ◽  
Alice Albu

Abstract We performed a retrospective study aiming to study the relationship between the ratio of the exogenous luteinizing hormone to follicle stimulating hormone (LH/FSH) administrated for controlled ovarian stimulation (COS) and the number and competence of the oocytes retrieved for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Eight hundred sixty-eight consecutive infertile patients (mean age 34.54 ± 4.01 years, mean anti-Müllerian hormone (AMH) 2.94 ± 2.07 ng/ml) treated with long agonist protocol and a mixed gonadotropin protocol (human menopausal gonadotropin in association with recombinant FSH (recFSH)) who performed IVF/ICSI between January 2013 and February 2016, were included. Patients with severe male factor were excluded. LH/FSH was calculated based on total doses of the two gonadotropins. We found, after adjustment for confounders, a positive relationship between LH/FSH and the retrieved oocytes’ (β = 0.229, P&lt;0.0001) and zygotes’ number (β = 0.144, P&lt;0.0001) in the entire study group and in subgroups according to age (&lt;35 and ≥35 years) and ovarian reserve (AMH &lt; 1.1 and ≥ 1.1 ng/ml). The fertilization rate was positively associated with LH/FSH in patients with LH/FSH in the lowest three quartiles (below 0.77) (β = 0.096, P=0.034). However, patients in the fourth quartile of LH/FSH had a lower fertilization rate as compared with patients in quartiles 1–3 which, after adjustment for covariates, was only marginally negatively related with LH/FSH (β = −0.108, P=0.05). In conclusion, our results suggest that the adequate LH/FSH administrated during COS can improve the oocytes’ and zygotes’ number in IVF/ICSI cycles, but also the fertilization rate when a certain proportion of LH/FSH is not exceeded.


2021 ◽  
Author(s):  
Michal Kirshenbaum ◽  
Or Gil ◽  
Jigal Haas ◽  
Ravit Nahum ◽  
Eran Zilberberg ◽  
...  

Abstract Background: Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) activate distinct intracellular signaling cascades. However, due to their similar structure and common receptor, they are used interchangeably during ovarian stimulation (OS). This study aims to assess if the source of LH used during OS affects IVF outcome. Materials and methods: This was a cross sectional study of patients who underwent two consecutive IVF cycles, one included recombinant follicular stimulating hormone (FSH) plus recombinant LH [rFSH+rLH, (Pergoveris)] and the other included urinary hCG [highly purified hMG (HP-hMG), (Menopur)]. The OS protocol, except of the LH preparation, was identical in the two IVF cycles. Results: The rate of mature oocytes was not different between the treatment cycles (0.9 in the rFSH+rLH vs 0.8 in the HP-hMG, p=0.07). Nonetheless, the mean number of mature oocytes retrieved in the rFSH+rLH treatment cycles was higher compared to the HP-hMG treatment cycles (10 ± 5.8 vs 8.3 ±4.6, respectively, P=0.01). Likewise, the mean number of fertilized oocytes was higher in the rFSH+rLH cycles compared with the HP-hMG cycles (8.5 ± 5.9 vs 6.4 ± 3.6, respectively, p=0.05). There was no difference between the treatment cycles regarding the number of top-quality embryos, the ratio of top-quality embryos per number of oocytes retrieved or fertilized oocytes or the pregnancy rate. Conclusion: The differences in treatment outcome, derived by different LH preparations reflect the distinct physiological role of these molecules. Our findings may assist in tailoring a specific GT regimen when assembling an OS protocol.


Sign in / Sign up

Export Citation Format

Share Document