SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum

2021 ◽  
pp. 103632
Author(s):  
Honghong Zhang ◽  
Yurong Li ◽  
Wenyu Lai ◽  
Kun Huang ◽  
Yaling Li ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Akeem O. Taiwo ◽  
Lincoln A. Harper ◽  
Mark C. Derbyshire

Abstract Background The fungicide fludioxonil over-stimulates the fungal response to osmotic stress, leading to over-accumulation of glycerol and hyphal swelling and bursting. Fludioxonil-resistant fungal strains that are null-mutants for osmotic stress response genes are easily generated through continual sub-culturing on sub-lethal fungicide doses. Using this approach combined with RNA sequencing, we aimed to characterise the effects of mutations in osmotic stress response genes on the transcriptional profile of the important agricultural pathogen Sclerotinia sclerotiorum under standard laboratory conditions. Our objective was to understand the impact of disruption of the osmotic stress response on the global transcriptional regulatory network in an important agricultural pathogen. Results We generated two fludioxonil-resistant S. sclerotiorum strains, which exhibited growth defects and hypersensitivity to osmotic stressors. Both had missense mutations in the homologue of the Neurospora crassa osmosensing two component histidine kinase gene OS1, and one had a disruptive in-frame deletion in a non-associated gene. RNA sequencing showed that both strains together differentially expressed 269 genes relative to the parent during growth in liquid broth. Of these, 185 (69%) were differentially expressed in both strains in the same direction, indicating similar effects of the different point mutations in OS1 on the transcriptome. Among these genes were numerous transmembrane transporters and secondary metabolite biosynthetic genes. Conclusions Our study is an initial investigation into the kinds of processes regulated through the osmotic stress pathway in S. sclerotiorum. It highlights a possible link between secondary metabolism and osmotic stress signalling, which could be followed up in future studies.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document