Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear

2011 ◽  
Vol 47 (2) ◽  
pp. 98-118 ◽  
Author(s):  
Alessandro Zona ◽  
Gianluca Ranzi
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2009 ◽  
Vol 12 (4) ◽  
pp. 84-93
Author(s):  
Nghi Luong Bao Le ◽  
Thanh Cong Bui

This paper present the displacement-based finite element formulation for the non-linear analysis of composite steel-concrete beams with partial interaction that occurs due to deformation of shear connectors. The formuation considers the non-linear behaviour of materials as well as shear connectors. The finite element for composite beams which is based on Newmark kinematical model has 8 DOF. Numerical applications are perfomed for simply supported beam and continuous beams. The results are compared with experimental data in order to validate the reliability of the formulation. The results are also disscussed for influence of partial interaction and non-linear behaviour of materials as well as shear connectors on behaviour of composite beams.


Sign in / Sign up

Export Citation Format

Share Document