On the numerical implementation of the Closest Point Projection algorithm in anisotropic elasto-plasticity with nonlinear mixed hardening

2016 ◽  
Vol 121 ◽  
pp. 1-17 ◽  
Author(s):  
Mar Miñano ◽  
Miguel A. Caminero ◽  
Francisco J. Montáns
2014 ◽  
Vol 624 ◽  
pp. 131-138 ◽  
Author(s):  
Michele Godio ◽  
Ioannis Stefanou ◽  
Karam Sab ◽  
Jean Sulem

A Finite Elements formulation previously developed for Cosserat elastic plates, has been extended herein to the elastoplastic framework. Material non-linearities are taken into account through the implementation of a backward-Euler closest-point-projection algorithm, for which the definition of non-smooth yield loci and non-associated plastic potentials and evolution laws is made possible. An existing homogenized elastic constitutive model and a set of yield criteria for the out-of-plane behaviour of block-masonry are implemented in the code and their validity is discussed based on the comparison with Discrete Elements simulations. The comparison is carried out in both the static and the dynamic regime.


2014 ◽  
Vol 23 (8) ◽  
pp. 1150-1167 ◽  
Author(s):  
Yosr Ghozzi ◽  
Carl Labergere ◽  
Khemais Saanouni ◽  
Anthony Parrico

This work concerns the modelling and numerical simulation of specific thick sheet cutting process using advanced constitutive equations accounting for elasto-plasticity with mixed hardening fully coupled with isotropic ductile damage. First, the complex kinematics of the different tools is modelled with specific boundary conditions. Second, the fully and strongly coupled constitutive equations are summarized and the associated numerical aspects are shortly presented. An inverse material identification procedure is used to determine the convenient values of the material parameters. Finally, the double slitting process is numerically simulated and the influence of the main technological parameters studied focusing on the cutting forces.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhan-ping Song ◽  
Ten-tian Yang ◽  
An-nan Jiang

To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM). Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.


2020 ◽  
pp. 1-32 ◽  
Author(s):  
Elizaveta Vyacheslavovna Zipunova ◽  
Evgeny Borisovich Savenkov

Sign in / Sign up

Export Citation Format

Share Document