The phylogeography and population genetics of Polyprion oxygeneios based on mitochondrial DNA sequences and microsatellite DNA markers

2016 ◽  
Vol 174 ◽  
pp. 19-29 ◽  
Author(s):  
Henry S. Lane ◽  
Jane E. Symonds ◽  
Peter A. Ritchie
2018 ◽  
Vol 19 (4) ◽  
pp. 1593-1600
Author(s):  
SUTARNO . ◽  
NINA KURNIANINGRUM ◽  
ELISA HERAWATI ◽  
AHMAD DWI SETYAWAN

Sutarno, Kurnianingrum N, Herawati E, Setyawan AD. 2018. Interspecies and intraspecies genetic diversity of Ongole Gradecattle and Madura cattle based on microsatellite DNA markers. Biodiversitas 19: 1593-1600. DNA microsatellite has been extensivelyemployed for estimating the degree of kinship between genotypes and improving the quality of cattle products. Microsatellite markersare short-patterned DNA sequences and repeated tandem (sequentially) with 2-5 nucleotide units scattering the entire genome. Thepurpose of this study was to investigate the genetic characteristics of inter and intraspecies of Ongole Grade cattle and Madura cattleusing microsatellite DNA markers. Blood samples from 20 individuals of each species were extracted by the method referring to WizardGenomic DNA Purification Kit (Promega, USA) and PCR amplification was performed using 5 microsatellite loci, i.e., BM1824,ETH225, INRA005, MM12, and TGLA227. Results of the genetic characteristics of both species were calculated using the POPGENEprogram version 1.31. The data suggest that there is a genetic diversity of inter and intraspecies of Ongole Grade cattle and Maduracattle. The average value of Shannon's Information Index (I) at all microsatellite loci for Ongole Grade cattle was 0.76 and for Maduracattle was 1.12. Meanwhile, the average interspecies I value was 1.03. The mean intraspecies Polymorphic Information Content (PIC) ofOngole Grade and Madura cattle was 0.43, and 0.63, respectively, and the mean interspecies PIC value was 0.57. The data altogethersuggest that all loci meet the standards as being informative markers in the assessment of genetic population because it has a PIC value>0.5 especially for intraspecies of Madura cattle.


2021 ◽  
Author(s):  
◽  
Rachel Zoe Wilcox

<p>Notolabrus celidotus (the New Zealand spotty) is a common rocky reef species that is endemic to New Zealand. This species is the most abundant demersal reef fish in New Zealand, and is distributed throughout the North and South Islands, and Stewart Island. Notolabrus celidotus consumes a wide variety of small invertebrates, and juveniles are reliant on coastal kelp forests as nursery habitats. Because N. celidotus is such a common species on New Zealand rocky reefs it is a good model species for population genetic studies.  The primary goal of this research was to investigate new genetic markers and add new sample locations to bolster previous genetic population data from N. celidotus. The thesis research utilised DNA sequences obtained from a 454 massively parallel DNA sequencer and reports six new microsatellite loci for N. celidotus. These loci are the first microsatellite DNA markers to be developed for this species. Additional mitochondrial DNA (mtDNA) control region sequences were obtained from new samples of N. celidotus and combined with previously reported mtDNA sequences. Increasing the sample size improved the genetic coverage of N. celidotus populations around coastal New Zealand. The mtDNA sequences were analysed to examine the population connectivity and demographic history of N. celidotus. The microsatellite DNA loci reported in this study were also used to examine the levels of genetic diversity and population structure in N. celidotus.  Results of the combined genetic analyses revealed extremely high levels of genetic diversity among the population sample of the mtDNA control region. Both the mitochondrial DNA and microsatellite DNA analyses showed a distinct lack of population genetic structuring, which suggests there is constant mixing of N. celidotus among sites. The results of this study have the potential to inform the expectations about the genetic structure of closely related wrasse species, such as Notolabrus fucicola, as well as other coastal species that have a similar life history, dispersal power, and New Zealand-wide distribution.</p>


2021 ◽  
Author(s):  
◽  
Rachel Zoe Wilcox

<p>Notolabrus celidotus (the New Zealand spotty) is a common rocky reef species that is endemic to New Zealand. This species is the most abundant demersal reef fish in New Zealand, and is distributed throughout the North and South Islands, and Stewart Island. Notolabrus celidotus consumes a wide variety of small invertebrates, and juveniles are reliant on coastal kelp forests as nursery habitats. Because N. celidotus is such a common species on New Zealand rocky reefs it is a good model species for population genetic studies.  The primary goal of this research was to investigate new genetic markers and add new sample locations to bolster previous genetic population data from N. celidotus. The thesis research utilised DNA sequences obtained from a 454 massively parallel DNA sequencer and reports six new microsatellite loci for N. celidotus. These loci are the first microsatellite DNA markers to be developed for this species. Additional mitochondrial DNA (mtDNA) control region sequences were obtained from new samples of N. celidotus and combined with previously reported mtDNA sequences. Increasing the sample size improved the genetic coverage of N. celidotus populations around coastal New Zealand. The mtDNA sequences were analysed to examine the population connectivity and demographic history of N. celidotus. The microsatellite DNA loci reported in this study were also used to examine the levels of genetic diversity and population structure in N. celidotus.  Results of the combined genetic analyses revealed extremely high levels of genetic diversity among the population sample of the mtDNA control region. Both the mitochondrial DNA and microsatellite DNA analyses showed a distinct lack of population genetic structuring, which suggests there is constant mixing of N. celidotus among sites. The results of this study have the potential to inform the expectations about the genetic structure of closely related wrasse species, such as Notolabrus fucicola, as well as other coastal species that have a similar life history, dispersal power, and New Zealand-wide distribution.</p>


2018 ◽  
Vol 51 ◽  
pp. 185-192
Author(s):  
S. Kruhlyk ◽  
V. Dzitsiuk ◽  
V. Spyrydonov

Genetic variability of domestic dogs is a source for effective process of breed formation and creating unique gene complexes. In the world, for preservation of genetic resources of dogs, there are dog training associations which have great confidence: American Club Dog Breeders (AKC), the British Kennel Club (KC) and the Federation Cynologique Internationale (FCI), aimed at protecting breeding dogs, standards creation, registration of a breed, and issuance of accurate pedigrees. Evaluation of the genetic diversity of dog breeds is able to significantly complement and improve their breeding programs. Since breeds of dog differ in morphological and economic characteristics, the problem of finding of the breed features in the genome of animals is becoming more topical. From this point of view, French Bulldog is an interesting breed of dog (FRANC.BULLDOGGE, FCI standard number 101) which belongs by the classification of breeds, adopted in FCI, to the group IX – a dog-companion for health and fun, but to a subgroup of fighting dogs of a small format. French Bulldog breed has been researched slightly not only in Ukraine and also abroad, as the main work of all dog association is focused on solving theoretical and practical issues of breeding, keeping, feeding, veterinary protection and others. The study was conducted at Research Department of Molecular Diagnostic Tests of Ukrainian Laboratory of Quality and Safety of Agricultural Products. 33 animals of French Bulldog breed, admitted to use in dog breeding of Ukrainian Kennel Union (UKU), were involved for the genetic analysis using DNA markers. The materials of the research were buccal epithelial cells, selected before the morning feeding of animals by scraping mucous membrane of oral cavity with disposable, dry, sterile cotton swab. Genomic DNA was extracted using KIT-set of reagents for DNA isolation according to the manufacturer's instructions. PEZ1, PEZ3, PEZ6, PEZ8, FHC 2010, FHC 2054 markers, recommended by International Society for Animal Genetics (ISAG), ACN, КC and FCI, were used for research. As a result of research 25 alleles for all the loci were detected in the experimental sample of dogs. The average number of alleles at the locus Na, obtained by direct counting, was 4.16. The most polymorphic loci for this breed were PEZ6 and PEZ3 with 8 and 6 allelic variants. Monomorphic loci were PEZ8 and FHC 2054 which had 4 and 3 alleles and the lowest level of polymorphism was observed for PEZ 1 and FHC 2010 loci in which only 2 alleles were identified. On analyzing the molecular genetic characteristics of dogs of French Bulldog breed, we found a high variability of genotype on rare alleles, which included alleles: M, C, D, E, J, K, L, O, N and representing 60% of the total number of the identified alleles. C, D, E alleles for PEZ3 locus and O allele at PEZ6 locus are unique to the sampling of dogs because they are not repeated in other loci. Typical alleles: N, F, R, I, P, K, M are 40% of the total. But F, R alleles for PEZ3 locus and P allele for locus PEZ6 are not repeated either in standard allelic variants or in rare one, indicating a high information content of these alleles and loci to be used for further monitoring of allele pool, genetic certification and identification of dogs. Microsatellite DNA loci were analyzed as a result of investigations of French Bulldogs and the most informative: PEZ3, PEZ6 and PEZ8 were found, which have high efficiency in individual and breed certification of dogs due to high variability. These data allow further monitoring of the state of genetic diversity of the breed and the development of measures for improvement of breeding to preserve the structure of breeding material. The study of individual and population genetic variability is advisable to continue for breeding of French Bulldogs "in purity" and preserving valuable gene complexes. The results are the basis for further monitoring of the proposed informative panels of microsatellite DNA markers for genotyping dog of French Bulldog breed and their complex evaluation.


2008 ◽  
Vol 16 (2) ◽  
pp. 156
Author(s):  
Liao Xinjun ◽  
Chang Hong ◽  
Zhang Guixiang ◽  
Wang Donglei ◽  
Song Weitao ◽  
...  

2010 ◽  
Vol 34 (2) ◽  
pp. 169-177
Author(s):  
Fu-ping LIU ◽  
Jun-jie BAI ◽  
Hong-mei SONG ◽  
Xing YE ◽  
Sheng-jie LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document