Combined chemical and phase equilibrium for the hydration of ethylene to ethanol calculated by means of the Peng–Robinson–Stryjek–Vera equation of state and the Wong–Sandler mixing rules

2011 ◽  
Vol 307 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Mario Llano-Restrepo ◽  
Y. Mauricio Muñoz-Muñoz
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Jingwei Huang ◽  
Hongsheng Wang

Confined phase behavior plays a critical role in predicting production from shale reservoirs. In this work, a pseudo-potential lattice Boltzmann method is applied to directly model the phase equilibrium of fluids in nanopores. First, vapor-liquid equilibrium is simulated by capturing the sudden jump on simulated adsorption isotherms in a capillary tube. In addition, effect of pore size distribution on phase equilibrium is evaluated by using a bundle of capillary tubes of various sizes. Simulated coexistence curves indicate that an effective pore size can be used to account for the effects of pore size distribution on confined phase behavior. With simulated coexistence curves from pore-scale simulation, a modified equation of state is built and applied to model the thermodynamic phase diagram of shale oil. Shifted critical properties and suppressed bubble points are observed when effects of confinement is considered. The compositional simulation shows that both predicted oil and gas production will be higher if the modified equation of state is implemented. Results are compared with those using methods of capillary pressure and critical shift.


1991 ◽  
Vol 67 ◽  
pp. 31-44 ◽  
Author(s):  
Paul M. Mathias ◽  
Herbert C. Klotz ◽  
John M. Prausnitz

2004 ◽  
Vol 42 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Mirjana Lj. Kijevčanin ◽  
Bojan D. Djordjević ◽  
Slobodan P. Šerbanović ◽  
Ivona R. Grgurić ◽  
Aleksandar Ž Tasić

Sign in / Sign up

Export Citation Format

Share Document