Screening of adjunct cultures and their application in ester formation in Camembert-type cheese

2018 ◽  
Vol 70 ◽  
pp. 33-41 ◽  
Author(s):  
Q. Hong ◽  
X.M. Liu ◽  
F. Hang ◽  
J.X. Zhao ◽  
H. Zhang ◽  
...  
1970 ◽  
Vol 10 (3) ◽  
pp. 189-196 ◽  
Author(s):  
H. Iizuka ◽  
H. T. Lin ◽  
M. Iida

Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-25
Author(s):  
Wenhong Lin ◽  
Shea T. Meyer ◽  
Shawn Dormann ◽  
John D. Chisholm

2-(Trimethylsilyl)ethyl 2,2,2-trichloroacetimidate is readily synthesized from 2-trimethylsilylethanol in high yield. This imidate is an effective reagent for the formation of 2-trimethylsilylethyl esters without the need for an exogenous promoter or catalyst, as the carboxylic acid substrate is acidic enough to promote ester formation without an additive. A deuterium labeling study indicated that a β-silyl carbocation intermediate is involved in the transformation.


1994 ◽  
Vol 47 (4) ◽  
pp. 649 ◽  
Author(s):  
DJ Collins ◽  
GD Fallon ◽  
CE Skene

Reaction of 6-methoxy-2-[(1′-methyl-2′,5′-dioxocyclopentyl)methyl]-3,4-dihydronaphthalen-1(2H)-one (4a) with 1 or 2 moles of O- methylhydroxylamine hydrochloride in pyridine gave (1′SR,2RS)-6-methoxy-2-[(1′-methyl-2′,5′-dioxocyclopentyl)methyl]-3,4-dihydronaphthalen-1(2H)-one (E)-2′-O-methyloxime (5a), or the corresponding 2′,5′-bis(O-methyloxime ) (6), respectively. A minor product from the formation of the bis (O- methyloxime ) (6) was the (Z) isomer (5b) of the mono(O- methyloxime ) (5a); the structure and stereochemistry of (5a) and (5b) were established by X-ray crystallography. Reduction of the keto bis (O-methyloxime ) (6) with 0.25 mole of lithium aluminium hydride gave a diastereomeric mixture of the corresponding alcohols (7a), of which the major isomer was characterized by ester formation. The bis (O-methyloxime ) (6) could be hydrolysed to the parent triketone (4a), but it resisted deprotection with cetyltrimethylammonium permanganate. Reaction of the triketone (4a) with 1 mole of 4-anisidine in the presence of 4-toluenesulfonic acid resulted in retro Michael cleavage with formation of 3-(4′-methoxyphenyl)amino-2-methylcyclopent-2-en-1-one (1).


2017 ◽  
Vol 70 (2) ◽  
pp. 220-227 ◽  
Author(s):  
Qing Hong ◽  
Gang Wang ◽  
Qiuxiang Zhang ◽  
Fengwei Tian ◽  
Liu Xiao-Ming ◽  
...  

1998 ◽  
Vol 39 (43) ◽  
pp. 7959-7962 ◽  
Author(s):  
Chee Wee Phoon ◽  
Steven F Oliver ◽  
Chris Abell
Keyword(s):  

2021 ◽  
Vol 37 (3) ◽  
pp. 626-633
Author(s):  
Bhawana Arora ◽  
Jitendra Ojha ◽  
Pallavi Mishra

Oxidation of secondary alcohols is an important part of synthetic organic chemistry. Various studies are carried out at different reaction conditions to determine the best mechanistic pathways. In our study, oxidation of different secondary alcohols was done by using Benzimidazolium Fluorochromate in Dimethyl Sulphoxide, which is a non-aqueous solvent. Oxidation resulted in the formation of ketonic compounds. The reaction showed first order kinetics both in BIFC and in the alcohols. Hydrogen ions were used to catalyze the reaction. We selected four different temperatures to carry out our study. The correlation within the activation parameters like enthalpies and entropies was in accordance with the Exnerʼs criterion. The deuterated benzhydrol (PhCDOHPh) oxidation exhibited an important primary kinetic isotopic effect (kH / kD = 5.76) at 298 K. The solvent effect was studied using the multiparametric equations of Taft and Swain. There was no effect of addition of acrylonitrile on the oxidation rate. The mechanism involved sigmatropic rearrangement with the transfer of hydrogen ion taking place from alcohol to the oxidant via a cyclic chromate ester formation.


Sign in / Sign up

Export Citation Format

Share Document