Study by 1H NMR spectroscopy of the evolution of extra virgin olive oil composition submitted to frying temperature in an industrial fryer for a prolonged period of time

2012 ◽  
Vol 134 (1) ◽  
pp. 162-172 ◽  
Author(s):  
M.D. Guillén ◽  
P.S. Uriarte
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2233
Author(s):  
Francesca Calò ◽  
Chiara Roberta Girelli ◽  
Federica Angilè ◽  
Laura Del Coco ◽  
Lucia Mazzi ◽  
...  

Considering the growing number of extra virgin olive oil (EVOO) producers in the world, knowing the influence of olive oils with different geographical origins on the characteristics of the final blend becomes an interesting goal. The present work is focused on commercial organic EVOO blends obtained by mixing multiple oils from different geographical origins. These blends have been studied by 1H-NMR spectroscopy supported by multivariate statistical analysis. Specific characteristics of commercial organic EVOO blends originated by mixing oils from Italy, Tunisia, Portugal, Spain, and Greece were found to be associated with the increasing content of the Italian component. A linear progression of the metabolic profile defined characteristics for the analysed samples—up to a plateau level—was found in relation to the content of the main constituent of the Italian oil, the monocultivar Coratina. The Italian constituent percentage appears to be correlated with the fatty acids (oleic) and the polyphenols (tyrosol, hydroxytyrosol, and derivatives) content as major and minor components respectively. These results, which highlight important economic aspects, also show the utility of 1H-NMR associated with chemometric analysis as a powerful tool in this field. Mixing oils of different national origins, to obtain blends with specific characteristics, could be profitably controlled by this methodology.


2010 ◽  
Vol 33 (2) ◽  
pp. 228-247 ◽  
Author(s):  
SAIDA BEDBABIS ◽  
MARIA LISA CLODOVEO ◽  
BÉCHIR BEN ROUINA ◽  
MAKKI BOUKHRIS

Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 60 ◽  
Author(s):  
Chiara Roberta Girelli ◽  
Laura Del Coco ◽  
Samanta Zelasco ◽  
Amelia Salimonti ◽  
Francesca Luisa Conforti ◽  
...  

According to Coldiretti, Italy still continues to hold the European Quality record in extra virgin olive oils with origin designation and protected geographical indication (PDO and PGI). To date, 46 Italian brands are recognized by the European Union: 42 PDO and 4 PGI (Tuscan PGI, Calabria PGI; Tuscia PGI and PGI Sicily). Specific regulations, introduced for these quality marks, include the designation of both the geographical areas and the plant varieties contributing to the composition of the olive oil. However, the PDO and PGI assessment procedures are currently based essentially on farmer declarations. Tuscan PGI extra virgin olive oil is one of the best known Italian trademarks around the world. Tuscan PGI varietal platform is rather wide including 31 specific olive cultivars which should account for at least 95% of the product. On the other hand, while the characteristics of other popular Italian extra virgin olive oils (EVOOs) cultivars from specific geographical areas have been extensively studied (such as those of Coratina based blends from Apulia), little is still known about Tuscan PGI EVOO constituents. In this work, we performed, for the first time, a large-scale analysis of Tuscan PGI monocultivar olive oils by 1H NMR spectroscopy and multivariate statistical analyses (MVA). After genetic characterization of 217 leaf samples from 24 selected geographical areas, distributed all over the Tuscany, a number of 202 micro-milled oil samples including 10 PGI cultivars, was studied. The results of the present work confirmed the need of monocultivar genetically certified EVOO samples for the construction of 1H-NMR-metabolic profiles databases suitable for cultivar and/or geographical origin assessment. Such specific PGI EVOOs databases could be profitably used to justify the high added value of the product and the sustainability of the related supply chain.


2011 ◽  
pp. 83-147 ◽  
Author(s):  
Paolo Inglese ◽  
Franco Famiani ◽  
Fabio Galvano ◽  
Maurizio Servili ◽  
Sonia Esposto ◽  
...  

Foods ◽  
2017 ◽  
Vol 6 (11) ◽  
pp. 96 ◽  
Author(s):  
Domenico Rongai ◽  
Nadia Sabatini ◽  
Laura Del Coco ◽  
Enzo Perri ◽  
Paolo Del Re ◽  
...  

2015 ◽  
Vol 420 ◽  
pp. 258-264 ◽  
Author(s):  
Giacomo Dugo ◽  
Archimede Rotondo ◽  
Domenico Mallamace ◽  
Nicola Cicero ◽  
Andrea Salvo ◽  
...  

2018 ◽  
Vol 69 (2) ◽  
pp. 249 ◽  
Author(s):  
X. Y. Jiang ◽  
C. Li ◽  
Q. Q. Chen ◽  
X. C. Weng

This paper reports the comparison of determination methods for extra virgin olive oil (EVOO) adulteration with two kinds of oils, refined olive oil (ROO) and soybean oil by 19FNMR, 1H NMR and chemical titration. The determination of adulteration of EVOO with ROO by 19F NMR was comparable to the conventional method. The contents of oleic, linoleic and linolenic acids of different oil samples can be determined by both 1H NMR and GC-MS. The results obtained from the two methods showed little differences. The adulteration of EVOO with soybean oil is detected by 1H NMR, although the limit of detection of the adulteration level is not less than 4.5%. The research demonstrates that 19F NMR can be a fast and convenient method to detect EVOO if it is adulterated with ROO and 1H NMR can be a fast and convenient method to detect EVOO if it is adulterated with seed oils.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 689 ◽  
Author(s):  
Frederick Lia ◽  
Benjamin Vella ◽  
Marion Zammit Mangion ◽  
Claude Farrugia

The application of 1H and 13C nuclear magnetic resonance (NMR) in conjunction with chemometric methods was applied for the discrimination and authentication of Maltese extra virgin olive oils (EVOOs). A total of 65 extra virgin olive oil samples, consisting of 30 Maltese and 35 foreign samples, were collected and analysed over four harvest seasons between 2013 and 2016. A preliminary examination of 1H NMR spectra using unsupervised principle component analysis (PCA) models revealed no significant clustering reflecting the geographical origin. In comparison, PCA carried out on 13C NMR spectra revealed clustering approximating the geographical origin. The application of supervised methods, namely partial least squares discriminate analysis (PLS-DA) and artificial neural network (ANN), on 1H and 13C NMR spectra proved to be effective in discriminating Maltese and non-Maltese EVOO samples. The application of variable selection methods significantly increased the effectiveness of the different classification models. The application of 13C NMR was found to be more effective in the discrimination of Maltese EVOOs when compared to 1H NMR. Furthermore, results showed that different 1H NMR pulse methods can greatly affect the discrimination of EVOOs. In the case of 1H NMR, the Nuclear Overhauser Effect (NOESY) pulse sequence was more informative when compared to the zg30 pulse sequence, since the latter required extensive spectral manipulation for the models to reach a satisfactory level of discrimination.


Sign in / Sign up

Export Citation Format

Share Document