A visual method to detect meat adulteration by recombinase polymerase amplification combined with lateral flow dipstick

2021 ◽  
Vol 354 ◽  
pp. 129526
Author(s):  
Liyun Lin ◽  
Yuzhong Zheng ◽  
Huiying Huang ◽  
Fenluan Zhuang ◽  
Huixia Chen ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1765
Author(s):  
Ming Fu ◽  
Quanwang Zhang ◽  
Xiang Zhou ◽  
Bang Liu

Meat adulteration has become a global social problem. In order to protect consumers from meat adulteration, several methods have been developed to identify meat species. However, the conventional methods are labor-intensive, time-consuming and require instruments. In the present study, a rapid and visual method based on recombinase polymerase amplification (RPA) and multiplex lateral flow dipstick (MLFD) was developed to detect duck ingredient in adulterated beef. Using recombinase and strand displacement polymerase enable RPA to amplify different double-labeled DNA amplicons at room temperature, which can be further detected by MLFD. The whole reaction process can be finished within 35 min, and the results can be determined by naked eyes. As low as 5% of duck ingredient in adulterated beef can be easily measured. Moreover, we confirmed that our new method held good potential in the detection of commercially processed meat samples. In conclusion, this study reported a useful animal derived meat adulteration detection method, which have potential application in future.


Plant Disease ◽  
2020 ◽  
Author(s):  
Zhiqiang Song ◽  
Xiai Yang ◽  
Xiaowei Zhang ◽  
Mingbao Luan ◽  
Bing Guo ◽  
...  

The northern root-knot nematode, Meloidogyne hapla, is a biotrophic parasite that infects many crops and causes severe economic losses worldwide. Rapid and accurate detection of M. hapla is crucial for disease forecasting and control. We developed a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay for rapid detection of M. hapla. The primers and a probe were designed based on the effector gene 16D10 sequence and were highly specific to M. hapla. The RPA reaction was performed at a wide range of temperatures from 25 to 45°C within 5 to 25 min, and the amplicon was visualized directly on the LFD within 5 min. The detection limits of the RPA-LFD assay were 10-3 female and 10-2 J2/0.5 g of soil, which was 10 times more sensitive than the conventional PCR assay. In addition, the RPA-LFD assay can detect M. hapla from infested plant roots and soil samples, and the entire detection process can be completed within 1.5 h. These results indicate that the RPA-LFD assay is a simple, rapid, specific, sensitive, and visual method that can be used for rapid detection of M. hapla in the field and in resource-limited conditions.


Sign in / Sign up

Export Citation Format

Share Document