Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies

2021 ◽  
pp. 130430
Author(s):  
Fei He ◽  
Jiawen Duan ◽  
Jiwen Zhao ◽  
Hehe Li ◽  
Jinyuan Sun ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1288
Author(s):  
María García-Nicolás ◽  
Natalia Arroyo-Manzanares ◽  
Lourdes Arce ◽  
Manuel Hernández-Córdoba ◽  
Pilar Viñas

Due to its multiple advantages, ion mobility spectrometry (IMS) is being considered as a complementary technique to mass spectrometry (MS). The goal of this work is to investigate and compare the capacity of IMS and MS in the classification of olive oil according to its quality. For this purpose, two analytical methods based on headspace gas chromatography (HS-GC) coupled with MS or with IMS have been optimized and characterized for the determination of volatile organic compounds from olive oil samples. Both detectors were compared in terms of sensitivity and selectivity, demonstrating that complementary data were obtained and both detectors have proven to be complementary. MS and IMS showed similar selectivity (10 out of 38 compounds were detected by HS-GC-IMS, whereas twelve compounds were detected by HS-GC-MS). However, IMS presented slightly better sensitivity (Limits of quantification (LOQ) ranged between 0.08 and 0.8 µg g−1 for HS-GC-IMS, and between 0.2 and 2.1 µg g−1 for HS-GC-MS). Finally, the potential of both detectors coupled with HS-GC for classification of olive oil samples depending on its quality was investigated. In this case, similar results were obtained when using both HS-GC-MS and HS-GC-IMS equipment (85.71 % of samples of the external validation set were classified correctly (validation rate)) and, although both techniques were shown to be complementary, data fusion did not improve validation results (80.95% validation rate).


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rong Zhou ◽  
Xiao Chen ◽  
Ying Xia ◽  
Maobin Chen ◽  
Yu Zhang ◽  
...  

AbstractThe purpose of the study was to reveal the differences of the flavor compounds among five Baiyunbian aged liquors by liquid-liquid extraction-gas chromatography-mass spectrometry (LLE-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). In optimizing the LLE parameters, an extractant, methyl tert-butyl ether, was found which has a good extract effect and has never been used for the extraction of liquor flavor substances. Then the optimized LLE method has been applied to comprehensively analyze flavor compounds in 3-year-storage liquors (3Y), 5Y, 12Y, 15Y, and 20Y of Baiyunbian liquors combined with GC-MS. The results showed that the number and concentration of total flavor compounds also enhanced with the increase of cellaring ages. The total concentration of flavor compounds in 20Y was the highest (4543.23 mg/L), and the 3Y was the lowest (3984.96 mg/L). Among them, the significant differences among five samples were esters, alcohols, acids and nitrogen-containing compounds. Cluster analysis was used to analyze the aromas profiles by LLE-GC-MS, which revealed relationship among five samples. The results showed that the similarity of the samples was highest between 15Y and 20Y, followed by 3Y and 5Y. The characteristic flavors fingerprints of five kinds of Baiyunbian aged liquors were established by HS-GC-IMS. The results showed that the characteristic peaks in GC-IMS 3D spectra corresponding to flavor compounds can effectively characterize the sample information areas. The sectional intensities of 60 characteristic peaks in the corresponding three-dimensional spectra were selected as variables. After the principal components analysis (PCA) was used to reduce information dimensionality, it was further distinguished by HS-GC-IMS that 3Y and 5Y can be completely separated, but 15Y and 20Y were very similar and cannot be completely distinguished. The obtained results are valuable for the in-depth understanding and further study of flavors of Baiyunbian liquors.


2021 ◽  
Author(s):  
Wenyao Zhu ◽  
Frank Benkwitz ◽  
Bahareh Sarmadi ◽  
Paul Kilmartin

A new quantitative method based on static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) is proposed, which enables the simultaneous quantification of multiple aroma compounds in wine. The method was first evaluated for its stability and the necessity of using internal standards as a quality control measure. The two major hurdles in applying GC-IMS in quantification studies, namely, non-linearity and multiple ion species, were also investigated using the Boltzmann function and generalized additive model (GAM) as potential solutions. Metrics characterizing the model performance, including root mean squared error, bias, limit of detection, limit of quantification, repeatability, reproducibility, and recovery were investigated. Both non-linear fitting methods, Boltzmann function and GAM, were able to return desirable analytical outcomes with an acceptable range of error. Potential pitfalls that would cause inaccurate quantification i.e., effects of ethanol content and competitive ionization, were also discussed. The performance of the SHS-GC-IMS method was subsequently compared against a currently established method, namely, GC-MS, using actual wine samples. These findings provide an initial validation of a GC-IMS-based quantification method, as well as a starting point for further enhancing the analytical scope of GC-IMS.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2888
Author(s):  
Shuang Chen ◽  
Jialing Lu ◽  
Michael Qian ◽  
Hongkui He ◽  
Anjun Li ◽  
...  

This paper proposes the combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and chemometrics as a method to detect the age of Chinese liquor (Baijiu). Headspace conditions were optimized through single-factor optimization experiments. The optimal sample preparation involved diluting Baijiu with saturated brine to 15% alcohol by volume. The sample was equilibrated at 70 °C for 30 min, and then analyzed with 200 μL of headspace gas. A total of 39 Baijiu samples from different vintages (1998–2019) were collected directly from pottery jars and analyzed using HS-GC-IMS. Partial least squares regression (PLSR) analysis was used to establish two discriminant models based on the 212 signal peaks and the 93 identified compounds. Although both models were valid, the model based on the 93 identified compounds discriminated the ages of the samples more accurately according to the goodness of fit value (R2) and the root mean square error of prediction (RMSEP), which were 0.9986 and 0.244, respectively. Nineteen compounds with variable importance for prediction (VIP) scores > 1, including 11 esters, 4 alcohols, and 4 aldehydes, played vital roles in the model established by the 93 identified compounds. Overall, we determined that HS-GC-IMS combined with PLSR could serve as a rapid and accurate method for detecting the age of Baijiu.


Sign in / Sign up

Export Citation Format

Share Document