Influence of modified atmosphere packaging and storage temperature on the sensory and microbiological quality of fresh peeled white asparagus

Food Control ◽  
2011 ◽  
Vol 22 (3-4) ◽  
pp. 369-374 ◽  
Author(s):  
A. Simón ◽  
E. Gonzalez-Fandos
2010 ◽  
Vol 16 (3) ◽  
pp. 259-265 ◽  
Author(s):  
I. Yilmaz ◽  
M. Demirci

The objective of this research was to determine physicochemical changes and microbiological quality of the different packaged meatball samples. Meatball samples in polystyrene tray were closed with polyethylene film (PS packs), vacuumed and modified atmosphere packaged, (MAP) (65% N2, 35% CO2), and held under refrigerated display (4 °C) for 8, 16 and 16 days for PS packs, vacuum and MAP, respectively. Microbial load, free fatty acids and thiobarbituric acid values of the samples tended to increase with storage time. Bacteria counts of the raw meatball samples increased 2 log cycles at the end of storage compared with initial values. Meatball samples can be stored without any microbiological problem for 7 days at 4 °C. Results from this study suggested that shelf-life assigned to modified-MAP and vacuum-packed meatballs may be appropriate. Meatball samples underwent physical deformation when they were packed before vacuum process. With these negative factors considered, MAP is superior to other two packs methods.


2021 ◽  
Vol 43 (3) ◽  
Author(s):  
Josiane Costa Melo ◽  
Cristiano André Steffens ◽  
Cassandro Vidal Talamini do Amarante ◽  
Tiago Miqueloto ◽  
Angélica Schmitz Heinzen

Abstract The objective of this study was to evaluate the effect of modified atmosphere (MA) and 1-methylcyclopropene (1-MCP) treatment on low storage temperature (1.5 °C) and 1-MCP treatment on high storage temperature (8.0 °C) on fruit quality of ‘Laetitia’ plums, mainly on internal browning. The treatments evaluated were 1.5 °C; 1-MCP (1.0 µL L-1) + 1.5 °C; MA + 1.5 °C; 1-MCP + MA + 1.5 °C; 8.0 °C; 1-MCP + 8.0 °C. Fruit were stored for 30 and 40 days, followed by three day of shelf life. For fruit stored at 1.5 °C, the treatment with 1-MCP associated to MA provided higher flesh firmness, less intense skin red color and reduced occurrence of internal browning in comparison to the fruit stored at 1.5 °C of the remaining treatments, for both periods of storage. In fruit not treated with 1-MCP and stored at 8.0 °C there was no occurrence of internal browning, despite of lower flesh firmness and more intense red color of the skin and flesh in comparison to the fruit stored at 1.5 °C. The treatment with 1-MCP in fruit stored at 8.0 °C delayed those changes of flesh firmness and red color of the skin and flesh assessed after 30 days of storage, followed by three days of shelf life. The MA, regardless of 1-MCP treatment, had fruit with higher production of acetaldehyde after 30 days of storage, and ethanol after 30 and 40 days of storage at 1.5 oC. In fruit stored at 1.5 °C without MA, the treatment with 1-MCP reduced the production of ethyl acetate, acetaldehyde and ethanol. Fruit stored at 8.0 °C, regardless of 1-MCP treatment, had the lowest production of acetaldehyde and ethanol.


2014 ◽  
Vol 77 (3) ◽  
pp. 499-503
Author(s):  
RACI EKİNCİ ◽  
ÇTIN KADAKAL ◽  
MUSTAFA OTAĞ

The objective of the present study was to investigate the effects of temperature and packaging on ergosterol and Howard mold count (HMC) changes of tomato paste during storage. The other purpose of this study was to determine whether the measurement of ergosterol stability in tomato paste can be useful for the assessment of microbiological quality of tomato paste as related to the storage temperature (4, 20, 28, or 37°C) and time. Ergosterol analysis was done by using high-performance liquid chromatography. Tomato paste samples were packaged in either aseptic bags or tin boxes and stored at 4, 20, 28, or 37°C for a period of 10 months. The detection limit of ergosterol was 0.1 mg/kg. Measurements showed that packaging and storage temperatures of 28 and 37°C have a considerable influence on ergosterol and HMC changes in the product. The poor precision of the “percentage of discarded fruits” and HMC methods has increased the importance of ergosterol for the microbiological quality evaluation of tomato and tomato products. This article reports the data from what we believe to be the first survey for the influence of storage temperature and packaging material on ergosterol and HMC changes of tomato paste during storage.


2012 ◽  
Vol 2 (6) ◽  
Author(s):  
Chrysa Voidarou ◽  
Georgios Rozos ◽  
Athanasios Alexopoulos ◽  
Stavros Plessas ◽  
Elisabeth Stavropoulou ◽  
...  

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 811D-811
Author(s):  
K. Tano ◽  
L.Z. Lee ◽  
F. Castaigne ◽  
J. Arul

Use of modified atmosphere (MA) as an adjunct to low temperature can be effective method for prolonging the shelflife of fresh fruits and vegetables. However, if storage temperature fluctuates, anoxic conditions can result and, consequently, the fresh produce quality can deteriorate rapidly. The objective of this investigation was to evaluate the effects of temperature fluctuation on the atmosphere inside the package and on the quality of packaged produce. Mushrooms (A. bisporus, U3 Sylvan 381) were packaged in rigid containers (4 liters) fitted with diffusion windows to obtain an atmosphere of 5% O2 and 10% CO2 at 4C. Temperature fluctuation had a major impact to the atmosphere inside package. During the first fluctuation sequence, O2 level depleted to 1.5% and CO2 increased to 18%. When the temperature returned to 4C during the next sequence, CO2 level fell back to 10%, but O2 level remained at 1.5%. The quality of mushrooms stored under temperature-fluctuating conditions was severely affected, as indicted by the extent of browning, loss of texture, and level of ethanol in the tissue compared to mushrooms stored at constant temperature. It was clear from this experiment that under temperature fluctuation, even it occurs once, can seriously compromise the benefits of MA packaging and safety of the packaged product. It is thus necessary that MA packaging compensate for the additional permeability required that is caused by storage temperature fluctuations.


Sign in / Sign up

Export Citation Format

Share Document