Physicochemical and molecular properties of gelatin from skin of golden carp (Probarbus Jullieni) as influenced by acid pretreatment and prior-ultrasonication

2018 ◽  
Vol 82 ◽  
pp. 164-172 ◽  
Author(s):  
Ali Muhammed Moula Ali ◽  
Hideki Kishimura ◽  
Soottawat Benjakul
TAPPI Journal ◽  
2012 ◽  
Vol 11 (6) ◽  
pp. 31-38
Author(s):  
TATIANA M. PÓVOAS ◽  
DINA A.G. ANGÉLICO ◽  
ANA P.V. EGAS ◽  
PEDRO E.G. LOUREIRO ◽  
LICÍNIO M. GANDO-FERREIRA ◽  
...  

We conducted a comparative evaluation of different treatments for the bleaching of eucalypt kraft pulps beginning with OP stages. The treatments tested were (1) an acid chelation stage with DTPA (OQP sequence); (2) a hot acid stage (AOP sequence); and (3) a chelant addition into the alkaline oxygen stage ((OQ)P and A(OQ)P sequences). The latter strategy was also studied for environmental reasons, as it contributes to the closure of the filtrate cycle. The OQP sequence leads to the highest brightness gain and pulp viscosity and the lowest peroxide consumption caused by an efficient metals control. Considering that the low biodegradability of the chelant is a problem, the A(OQ)P sequence is an interesting option because it leads to reduced peroxide consumption (excluding OQP) while still reaching high brightness values and similar brightness reversion to OQP prebleaching, with only a viscosity loss of 160 dm3/kg. Therefore, a hot acid stage could be considered when a separate acid Q stage is absent in a prebleaching sequence of Eucalyptus globulus kraft pulps involving OP stages.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


2019 ◽  
Author(s):  
Dorian Bader ◽  
Johannes Fröhlich ◽  
Paul Kautny

The facile preparation of three regioisomeric thienopyrrolocarbazoles applying a convenient C-H activation approach is presented. Derived from indolo[3,2,1-<i>jk</i>]carbazole, the incorporation of thiophene into the triarylamine framework significantly impacted the molecular properties of the parent scaffold. The developed thienopyrrolocarbazoles enrich the family of triarylamine donors and constitute a novel building block for functional organic materials.


Sign in / Sign up

Export Citation Format

Share Document