kraft pulps
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 23)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongfeng Zhang ◽  
Ester Tsenter ◽  
Paul Bicho ◽  
Erin A. S. Doherty ◽  
Richard Riehle ◽  
...  

Abstract Seven copolymers of maleic anhydride were hydrolyzed and impregnated into sheets of bleached softwood kraft pulps to enhance market pulp properties. Drying the impregnated pulps at 120 °C for 10 minutes, attached to the fiber surfaces up 0.16 meq of carboxyl groups per gram of dry pulp. Heating the impregnated pulps regenerates succinic anhydride moieties which can then form stable ester linkages with cellulosic hydroxyls. The pH of the impregnation solution is important. Impregnation with solutions at pH 8 gave polymer contents without repulping issues. By contrast, impregnation at pH 4 gave dried pulp sheets that were too strong to enable repulping in a paper mill. Although most of the seven copolymers were fixed to cellulose, poly(ethylene-alt-maleic anhydride) gave the highest density of carboxyl groups. The simplicity of waterborne polymers and mild drying temperatures suggests maleic anhydride copolymer treatment could be implemented in a conventional market pulp mill.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 505-516
Author(s):  
Monika Stankovská ◽  
Mária Fišerová ◽  
Juraj Gigac ◽  
Elena Opálená

The influence of addition of deinked pulps with low and high brightness to bleached eucalyptus and pine kraft pulps on functional tissue paper properties was studied. Deinked pulps with low and high brightness had some different functional properties. Deinked pulp with high brightness has higher bulk, porosity, water absorption after immersion, initial water absorption, bulk softness as well as brightness. On the contrary, the difference in relative bonded area and porosity e between deinked pulps with low and high brightness was moderate. The mixed pulps laboratory pulp sheets from bleached eucalyptus kraft pulp or bleached pine kraft pulp with addition of 20, 40 and 80% of deinked pulp with low brightness or deinked pulp with high brightness were prepared. The addition of the deinked pulp with high or low brightness to bleached kraft pulp leads to increasing of bulk, bulk softness as well as high water absorption after immersion and initial water absorption. The tensile index rapidly decreased by the addition of deinked pulps with high brightness to bleached eucalyptus and pine kraft pulps. Similarly, the addition of deinked pulp with low brightness to bleached pine kraft pulp led to rapid decreasing of tensile index. On contrary, with the addition of deinked pulp with low brightness to eucalyptus kraft pulp, the decreasing of tensile index was less pronounced. Mixed pulp from bleached eucalyptus kraft pulp with a small content of deinked pulp with low brightness with functional properties suitable for production of tissue papers was found as optimal.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (3) ◽  
pp. 186-197
Author(s):  
BRIAN N. BROGDON ◽  
LUCIAN A. LUCIAN

Earlier studies developed a steady-state model to predict the brightness and/or bleach consumption during the chlorine dioxide brightening (D1) of softwood pulps produced by conventional elemental-chlorine-free (ECF) sequences. This model relates the chlorine dioxide consumed to the brightness gains predicated upon an asymptotic D1 brightness limit, an incoming D1 pulp brightness, and an equation parameter (β11). The current investigation examines the application of this model to ECF sequences that use ozone delignification (Z-ECF). Literature D1 data from various Z-ECF bleaching studies, which investigated OZ, OD0/Z, and OZ/D0 delignification, were fitted to the model. The β11 parameter was found to be linearly correlated to the entering kappa number. Interestingly, this linear relationship was found to be identical to the relationships observed when modeling the D1 stage for conventional ECF and chlorine-based bleach sequences. Subtle differences in D1 brightening response in the model among the various bleach sequences are reflected by incoming pulp brightness (at the same kappa number). The current model is used to illustrate how alterations to Z-ECF delignification affect D1 brightening and chlorine dioxide consumption.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (10) ◽  
pp. 487-497
Author(s):  
TOVE JOELSSON ◽  
GUNILLA PETTERSSON ◽  
SVEN NORGREN ◽  
ANNA SVEDBERG ◽  
HANS HOGLUND ◽  
...  

It is known that the strength properties of wood-based paper materials can be enhanced via hot-pressing techniques. Today, there is a desire not only for a change from fossil-based packaging materials to new sustainable bio-based materials, but also for more effective and eco-friendly solutions for improving the dry and wet strength of paper and board. Against this background, hot pressing of paper made from high yield pulp (HYP), rich in lignin, becomes highly interesting. This study investigated the influence of pressing temperature and native lignin content on the properties of paper produced by means of hot pressing. Kraft pulps of varied lignin content (kappa numbers: 25, 50, 80) were produced at pilot scale from the same batch by varying the cooking time. We then studied the effect of lignin content by evaluating the physical properties of Rapid Köthen sheets after hot pressing in the temperature range of 20°C–200°C with a constant nip pressure of 7 MPa. The pilot-scale cooked pulps were compared with reference samples of mill-produced northern bleached soft-wood kraft (NBSK) pulp and mill-produced chemithermomechanical pulp (CTMP). Generally, the results demonstrated that lignin content had a significant effect on both dry and wet tensile index. All of the pilot cooked pulps with increased lignin content had a higher tensile index than the reference NBSK pulp. To obtain high tensile index, both dry and wet, the pressing temperature should be set high, preferably at least 200°C; that is, well above the glass transition temperature (Tg) for lignin. Moreover, the lignin content should preferably also be high. All kraft pulps investigated in this study showed a linear relationship between wet strength and lignin content.


2020 ◽  
Vol 20 (9) ◽  
pp. 5642-5647
Author(s):  
Lachlan Thompson ◽  
Mostafa Nikzad ◽  
Igor Sbarski ◽  
Jalal Azadmanjiri ◽  
Jiawen Ren ◽  
...  

Two Australian native wooden sources (Acacia Mangium and Eucalyptus Globulus) derived pulps were explored as raw feed stocks to prepare the valuable nanomaterial of cellulose nanocrystals (CNC). After bleaching and acid hydrolysis, cellulose nanocrystals were successfully produced with high yields of approximately 60% for both kraft pulps. According to the characterization of SEM and AFM, the as prepared CNC had a rod like structure with the length and diameter in the range of 200~1000 nm and 10~100 nm, respectively based on the initial wooden source. XRD confirmed the crystalline structure of the resulting CNC. Further characterisation by TGA showed that the chemical treatment of the wood pulp had impact upon the thermal stability, evidenced by a lower onset temperature of the thermal decomposition of CNC.


2020 ◽  
Vol 10 (2) ◽  
pp. 53-60
Author(s):  
Ganis Lukmandaru ◽  
Fajar Setiaji ◽  
M. Rena Siagian

Paper industries commonly produce pulp sourced from a mixture of pulps, rather than from a single pulp, to obtain desired properties. In addition, the beating process is an essential step with respect to physical properties of pulp. Kraft pine (Pinus merkusii/PM) pulps were beaten to different degrees, i.e 200~300 CSF (heavy-beating) and 300~400 CSF (moderatebeating), paper sheets then were formed from each beaten sample. It was found that the strength properties of prepared paper sheets decreased the longer they were beaten, particularly as seen by the tear index and fold number. By microscopic investigation, it was found that cut or shortened fibers occurred very frequently in the pine pulps. Furthermore, the effects of heavily beaten pine pulp additions on handsheet properties of kraft pulps of Acacia nilotica (AN) were investigated. Four different mixing ratios by weight of AN/PM from 100:0, 90:10, 80:20, and 70:30 during beating, as well as four different kappa numbers of AN pulps (32.5, 34.0, 34.2, and 35.9) were applied. In general, the decrease in strength properties (3~25%) that occurred with increasing pine pulp ratio was more evident between pulp without pine and a 30% ratio of pine pulps. Fold number was reduced considerably (2.8~24.7%) by the blend composition but less pronounced in tear index (3.0~8.9%) from the initial values. However, the 10% or 20% ratio of PM pulps could increase opacity, brightness, and strength properties in some cases. No clear trend was found with increasing kappa number.


Surfaces ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 265-281 ◽  
Author(s):  
Catarina A. Azevedo ◽  
Sofia M. C. Rebola ◽  
Eddy M. Domingues ◽  
Filipe M. L. Figueiredo ◽  
Dmitry V. Evtuguin

Water absorption capacity is a key characteristic of cellulosic pulps used for different commodities. This property is influenced by the affinity of the pulp fiber surface with water, chemical composition of the pulp, morphology, and organization of fibers in the network. In this study, surface properties of six industrial Eucalyptus bleached kraft pulps (fluff pulps) dry-defiberized in a Hammermill, which were obtained by wood pulping and pulp bleaching under different production conditions, were studied while employing dynamic water vapor sorption and contact angles measurements. The absorption properties of air-laid pulp pads were analyzed following the absorbency testing procedure and the relationship between these properties and pulp’s chemical composition and fiber network structure were assessed by multivariate analysis. The results showed that the accessibility of the fiber surface is related to the reduction of the contact angles, but, at the same time, to the longer absorption time and less absorption capacity of the fiber network. Therefore, the absorption properties of the pulps are not necessarily directly related to their surface properties. Indeed, absorptivity is related to the surface chemical composition, fiber morphology, and fiber network structure. Thus, surface carboxylic groups promote total water uptake, resulting in better absorption capacity. Greater fiber coarseness and deformations (curl and kink) provide a less wettable surface, but a more porous network with higher specific volume, resulting in more absorbent air-laid formulations.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 536 ◽  
Author(s):  
Andrey S. Aksenov ◽  
Irina V. Tyshkunova ◽  
Daria N. Poshina ◽  
Anastasia A. Guryanova ◽  
Dmitry G. Chukhchin ◽  
...  

Kraft pulp enzymatic hydrolysis is a promising method of woody biomass bioconversion. The influence of composition and structure of kraft fibers on their hydrolysis efficiency was evaluated while using four substrates, unbleached hardwood pulp (UHP), unbleached softwood pulp (USP), bleached hardwood pulp (BHP), and bleached softwood pulp (BSP). Hydrolysis was carried out with Penicillium verruculosum enzyme complex at a dosage of 10 filter paper units (FPU)/g pulp. The changes in fiber morphology and structure were visualized while using optical and electron microscopy. Fiber cutting and swelling and quick xylan destruction were the main processes at the beginning of hydrolysis. The negative effect of lignin content was more pronounced for USP. Drying decreased the sugar yield of dissolved hydrolysis products for all kraft pulps. Fiber morphology, different xylan and mannan content, and hemicelluloses localization in kraft fibers deeply affected the hydrolyzability of bleached pulps. The introduction of additional xylobiase, mannanase, and cellobiohydrolase activities to enzyme mixture will further improve the hydrolysis of bleached pulps. A high efficiency of never-dried bleached pulp bioconversion was shown. At 10% substrate concentration, hydrolysates with more than 50 g/L sugar concentration were obtained. The bioconversion of never-dried BHP and BSP could be integrated into working kraft pulp mills.


Sign in / Sign up

Export Citation Format

Share Document