Modeling multiscale transport mechanisms, phase changes and thermomechanics during frying

2014 ◽  
Vol 62 ◽  
pp. 709-717 ◽  
Author(s):  
Harkirat S. Bansal ◽  
Pawan S. Takhar ◽  
Jirawan Maneerote
2014 ◽  
Vol 624 ◽  
pp. 155-162 ◽  
Author(s):  
Elena Gabrielli ◽  
Camilla Colla

Porous construction materials such as masonry constituents are notoriously affected by weathering, pollutants attack and damp transport with manifest consequences on the masonry visible appearance and its mechanical reliability. Water transport mechanisms inside such materials as well as the chemical reactions and phase changes occurring in salt at varying combinations of temperature and humidity content have been previously studied. Nevertheless the investigation of damp and salts degradation processes since their appearance in real structural elements and the monitoring over time of their evolution is a problem never completely investigated...


Author(s):  
Jared Grantham ◽  
Larry Welling

In the course of urine formation in mammalian kidneys over 90% of the glomerular filtrate moves from the tubular lumen into the peritubular capillaries by both active and passive transport mechanisms. In all of the morphologically distinct segments of the renal tubule, e.g. proximal tubule, loop of Henle and distal nephron, the tubular absorbate passes through a basement membrane which rests against the basilar surface of the epithelial cells. The basement membrane is in a strategic location to affect the geometry of the tubules and to influence the movement of tubular absorbate into the renal interstitium. In the present studies we have determined directly some of the mechanical and permeability characteristics of tubular basement membranes.


Author(s):  
J. M. Cowley ◽  
Sumio Iijima

The imaging of detailed structures of crystal lattices with 3 to 4Å resolution, given the correct conditions of microscope defocus and crystal orientation and thickness, has been used by Iijima (this conference) for the study of new types of crystal structures and the defects in known structures associated with fluctuations of stoichiometry. The image intensities may be computed using n-beam dynamical diffraction theory involving several hundred beams (Fejes, this conference). However it is still important to have a suitable approximation to provide an immediate rough estimate of contrast and an evaluation of the intuitive interpretation in terms of an amplitude object.For crystals 100 to 150Å thick containing moderately heavy atoms the phase changes of the electron wave vary by about 10 radians suggesting that the “optimum defocus” theory of amplitude contrast for thin phase objects due to Scherzer and others can not apply, although it does predict the right defocus for optimum imaging.


1973 ◽  
Vol 131 (1) ◽  
pp. 109-114 ◽  
Author(s):  
G. M. Green
Keyword(s):  

Metrologiya ◽  
2020 ◽  
pp. 25-42
Author(s):  
Dmitrii V. Khablov

This paper describes a promising method for non-contact vibration diagnostics based on the use of Doppler microwave sensors. In this case, active irradiation of the object with electromagnetic waves and the allocation of phase changes using two-channel quadrature processing of the received reflected signal are used. The modes of further fine analysis of the resulting signal using spectral or wavelet transformations depending on the nature of the active vibration are considered. The advantages of this non-contact and remote vibration analysis method for the study of complex dynamic objects are described. The convenience of the method for machine learning and use in intelligent systems of non-destructive continuous monitoring of the state of these objects by vibration is noted.


2016 ◽  
Vol 186 (6) ◽  
pp. 640-646
Author(s):  
Alexei V. Samokhvalov ◽  
Alexander S. Mel'nikov ◽  
Alexander I. Buzdin

Author(s):  
Suresh Akella ◽  
◽  
B Ramesh Kumar ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document