Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage

2021 ◽  
pp. 110476
Author(s):  
Chunsheng Li ◽  
Yue Zhao ◽  
Yueqi Wang ◽  
Laihao Li ◽  
Xianqing Yang ◽  
...  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Andrea Bagi ◽  
Even Sannes Riiser ◽  
Hilde Steine Molland ◽  
Bastiaan Star ◽  
Thomas H. A. Haverkamp ◽  
...  

Author(s):  
Yuan Zhao ◽  
Xiao–Meng Qin ◽  
Xue–Ping Tian ◽  
Tao Yang ◽  
Rong Deng ◽  
...  

Abstract Background Pinellia ternata (Thunb.) Breit. is a commonly used herb in traditional Chinese medicine, and the main raw material of various Chinese patent medicines. Continuous cropping obstacle (CCO) is the main factor leading to the decline of crop yields and quality. Methods Metagenomics sequencing technology was used to analyze the microbial community and functional genes of continuous cropping (CC) and control (CK) soils of P. ternata. In addition, differences in physicochemical properties, enzyme activities, microbial community composition and the abundance of functional genes in CC and CK were evaluated, as well as the relationship between these factors and CCO. Results Results indicated that CC of P. ternata led to the decline of rhizosphere soil pH, nutrient imbalance and enzyme activity reduction. Metagenomic analysis indicted that CC also changed the composition of the microbial community, causing an increase in the relative abundance of pathogenic microorganisms such as Fusarium, Klebsiella oxytoca and Pectobacterium carotovorum in the P. ternata rhizosphere. The relative abundance of potentially beneficial Burkholderia and Bradyrhizobium was recorded to decrease. Results also showed that there were considerable differences in CC and CK about the abundances of functional genes related to soil enzymes and the degradation of P. ternata allelochemicals, as well as the microbial groups which they belong. These results clarified the effects of CC on the microbial community structure and functional genes of soil. In addition, Burkholderia and Bradyrhizobium might play important roles in enhancing soil fertility and reducing the toxicity of phenolic acids in rhizosphere soil. Conclusions CC of P. ternata changed the physicochemical properties, microbial community and functional genes of rhizosphere soil. Burkholderia and Bradyrhizobium for enhancing soil fertility and reducing the toxicity of phenolic acids might be potentially beneficial. These results provide theoretical guidance for bioremediation of CCO soil of P. ternata and other staple crops. Graphic abstract


2018 ◽  
Author(s):  
Maozhen Han ◽  
Melissa Dsouza ◽  
Chunyu Zhou ◽  
Hongjun Li ◽  
Junqian Zhang ◽  
...  

AbstractBackgroundAgricultural activities, such as stock-farming, planting industry, and fish aquaculture, can influence the physicochemistry and biology of freshwater lakes. However, the extent to which these agricultural activities, especially those that result in eutrophication and antibiotic pollution, effect water and sediment-associated microbial ecology, remains unclear.MethodsWe performed a geospatial analysis of water and sediment associated microbial community structure, as well as physicochemical parameters and antibiotic pollution, across 18 sites in Honghu lake, which range from impacted to less-impacted by agricultural pollution. Furthermore, the co-occurrence network of water and sediment were built and compared accorded to the agricultural activities.ResultsPhysicochemical properties including TN, TP, NO3--N, and NO2--N were correlated with microbial compositional differences in water samples. Likewise, in sediment samples, Sed-OM and Sed-TN correlated with microbial diversity. Oxytetracycline and tetracycline concentration described the majority of the variance in taxonomic and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Finally, the structure of microbial co-associations was influenced by the eutrophication and antibiotic pollution.ConclusionThese analyses of the composition and structure of water and sediment microbial communities in anthropologically-impacted lakes are imperative for effective environmental pollution monitoring. Likewise, the exploration of the associations between environmental variables (e.g. physicochemical properties, and antibiotics) and community structure is important in the assessment of lake water quality and its ability to sustain agriculture. These results show agricultural practices can negatively influence not only the physicochemical properties, but also the biodiversity of microbial communities associated with the Honghu lake ecosystem. And these results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu lake.


2010 ◽  
Vol 45 (5) ◽  
pp. 473-477 ◽  
Author(s):  
Wen-Ching Chen ◽  
Wan-Nine Tseng ◽  
Jia-Lin Hsieh ◽  
Yei-Shung Wang ◽  
San-Lang Wang

2019 ◽  
Vol 47 (3) ◽  
pp. 343-349
Author(s):  
Jeong A Kim ◽  
Zhuang Yao ◽  
Hyun-Jin Kim ◽  
Jeong Hwan Kim

Sign in / Sign up

Export Citation Format

Share Document