scholarly journals Effects of continuous cropping of Pinellia ternata (Thunb.) Breit. on soil physicochemical properties, enzyme activities, microbial communities and functional genes

Author(s):  
Yuan Zhao ◽  
Xiao–Meng Qin ◽  
Xue–Ping Tian ◽  
Tao Yang ◽  
Rong Deng ◽  
...  

Abstract Background Pinellia ternata (Thunb.) Breit. is a commonly used herb in traditional Chinese medicine, and the main raw material of various Chinese patent medicines. Continuous cropping obstacle (CCO) is the main factor leading to the decline of crop yields and quality. Methods Metagenomics sequencing technology was used to analyze the microbial community and functional genes of continuous cropping (CC) and control (CK) soils of P. ternata. In addition, differences in physicochemical properties, enzyme activities, microbial community composition and the abundance of functional genes in CC and CK were evaluated, as well as the relationship between these factors and CCO. Results Results indicated that CC of P. ternata led to the decline of rhizosphere soil pH, nutrient imbalance and enzyme activity reduction. Metagenomic analysis indicted that CC also changed the composition of the microbial community, causing an increase in the relative abundance of pathogenic microorganisms such as Fusarium, Klebsiella oxytoca and Pectobacterium carotovorum in the P. ternata rhizosphere. The relative abundance of potentially beneficial Burkholderia and Bradyrhizobium was recorded to decrease. Results also showed that there were considerable differences in CC and CK about the abundances of functional genes related to soil enzymes and the degradation of P. ternata allelochemicals, as well as the microbial groups which they belong. These results clarified the effects of CC on the microbial community structure and functional genes of soil. In addition, Burkholderia and Bradyrhizobium might play important roles in enhancing soil fertility and reducing the toxicity of phenolic acids in rhizosphere soil. Conclusions CC of P. ternata changed the physicochemical properties, microbial community and functional genes of rhizosphere soil. Burkholderia and Bradyrhizobium for enhancing soil fertility and reducing the toxicity of phenolic acids might be potentially beneficial. These results provide theoretical guidance for bioremediation of CCO soil of P. ternata and other staple crops. Graphic abstract

2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Jinan Cheng ◽  
Hui Jin ◽  
Jinlin Zhang ◽  
Zhongxiang Xu ◽  
Xiaoyan Yang ◽  
...  

Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.


2021 ◽  
Vol 53 (2) ◽  
pp. 153-162
Author(s):  
H.H. Zhang ◽  
H.L. Feng ◽  
C.L. Zhang ◽  
X.D. Zhang ◽  
W.B. Jin ◽  
...  

2020 ◽  
Author(s):  
Huiqin Xie ◽  
Yongli Ku ◽  
Xiangna Yang ◽  
Le Cao ◽  
Xueli Mei ◽  
...  

Abstract Background: Melon (Cucumis melo L.) is one of the most important fruit crops grown in China. However, the yield and quality of melon have significantly declined under continuous cropping. Phenolic acids are believed to be associated with the continuous monocropping obstacle (CMO) and can influence plant microbe interactions. Coumaric acid (CA) is one of the major phenolic acids found in melon root exudates. The objectives of this study were to estimate the elimination of CA by the soil bacterium K3 as well as its effects on mitigating melon CMO. CA degradation was investigated by monitoring the CA retained in the growth medium using high performance liquid chromatography (HPLC). The effects of CA and K3 on rhizosphere soil microbial communities were investigated by the spread plate method and Illumina MiSeq sequencing. Furthermore, the effects of CA and K3 on melon seedling growth were measured under potted conditions. The changes in soil enzymes and fruit quality under K3 amendment were examined in a greenhouse experiment. Result:The results suggest that the addition of CA had the same result as the CMO, such as deterioration of the microbial community and slower growth of melon plants. HPLC and microbial analysis showed that K3 had a pronounced ability to decompose CA and could improve the soil microbial community environment. Soil inoculation with K3 agent could significantly improve the fruit quality of melon.Conclusion: Our results show that the effects of K3 in the soil are reflected by changes in populations and diversity of soil microbes and suggest that deterioration of microbial communities in soil might be associated with the growth constraint of melon in continuous monoculture systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziqin Pang ◽  
Fei Dong ◽  
Qiang Liu ◽  
Wenxiong Lin ◽  
Chaohua Hu ◽  
...  

The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qinwen Hou ◽  
Qingsong Zhao ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated.Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples.Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


2020 ◽  
Author(s):  
Yan Xu ◽  
Junfeng Niu ◽  
Lijun Chen ◽  
Xiaoqiang Wu ◽  
Zhongmin Dong ◽  
...  

Abstract Background Atractylodes lancea is a traditional Chinese medicine, which typically requires more than 3–4 years of continuous cropping to obtain the underground medicinal components. With continuous cropping years, the quality and yields of A. lancea medicinal materials decrease, while pests and diseases increase. These aspects are intimately correlated with rhizospheric microorganisms. Methods This research paper employed high-throughput sequencing for its detection in soil that was cultivated for three years and never cultivated to clarify the relationship between the microbial diversity of the rhizosphere and continuous A. lancea cropping. Results The rhizosphere microbial community was altered following the continuous cropping of A. lancea. The bacterial diversity and richness were observed to decrease, while the fungal community diversity increased, and richness decreased. The total OUTs of the soil bacteria and fungi of unplanted and planted A. lancea were 59.58% and 37.65%, respectively. At the phylum level, the relative abundance of Proteobacteria, Gemmatimonadetes, Acidobacteria and Chloroflexi decreased, whereas the relative abundance of Mortierellomycota increased. At the genus level, Bradyrhizobium, Striaticonidium, Dactylonectria, Sphingomonas, Burkholderiaceae, Rhodanobacter, Arthrobacter, Scleroderma, Mortierella and Penicillium were significantly different between the two sample groups. Conclusions Our results revealed that following the cultivation of A. lancea, the rhizospheric microbial community was altered. This study preliminarily determined the


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
张旭龙 ZHANG Xulong ◽  
马淼 MA Miao ◽  
吴振振 WU Zhenzhen ◽  
张志政 ZHANG Zhizheng ◽  
高睿 GAO Rui ◽  
...  

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 11 ◽  
Author(s):  
Chaoqun Wang ◽  
Lin Xue ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
Yihui Wei ◽  
...  

Soil enzymes and microbial communities are key factors in forest soil ecosystem functions and are affected by stand age. In this study, we studied soil enzyme activities, composition and diversity of bacterial and fungal communities and relevant physicochemical properties at 0–10 cm depth (D1), 10–20 cm depth (D2) and 20–30 cm depth (D3) soil layers in 3-(3a), 6-(6a), 12-(12a), 18-(18a), 25-(25a), 32-(32a) and 49-year-old (49a) Chinese fir plantations to further reveal the effects of stand age on soil biotic properties. Spectrophotometry and high-throughput sequencing was used to assess the soil enzyme activity and microbial community composition and diversity of Chinese fir plantation of different stand ages, respectively. We found that soil catalase activity increased as the stand age of Chinese fir plantations increased, whereas the activities of urease, sucrase and β-glucosidase in 12a, 18a and 25a were lower than those in 6a, 32a and 49a. Shannon and Chao1 indices of bacterial and fungal communities first decreased gradually from 6a to 18a or 25a and then increased gradually from 25a to 49a. Interestingly, the sucrase and β-glucosidase activities and the Shannon and Chao1 indices in 3a were all lower than 6a. We found that the relative abundance of dominant microbial phyla differed among stand ages and soil depths. The proportion of Acidobacteria first increased and then decreased from low forest age to high forest age, and its relative abundance in 12a, 18a and 25a were higher than 3a, 32a and 49a, but the proportion of Proteobacteria was opposite. The proportion of Ascomycota first decreased and then increased from 6a to 49a, and its relative abundance in 12a, 18a and 25a was lower than 3a, 6a, 32a and 49a. Our results indicate that soil enzyme activities and the richness and diversity of the microbial community are limited in the middle stand age (from 12a to 25a), which is important for developing forest management strategies to mitigate the impacts of degradation of soil biological activities.


Sign in / Sign up

Export Citation Format

Share Document