scholarly journals Food webs speak of human impact: Using stable isotope-based tools to measure ecological consequences of environmental change

Food Webs ◽  
2021 ◽  
pp. e00218
Author(s):  
Maria Alp ◽  
Julien Cucherousset
2000 ◽  
Vol 55 (3) ◽  
pp. 163-168
Author(s):  
A. S. Goudie

Abstract. Physical Geography has in recent years developed certain tendencies which have led to a greater coherence and to a greater degree of integration with the rest of Geography. Of particular importance are studies of the human impact, of environmental change and its impacts, of the application of Physical Geography to societal needs, of Geoecology and Landscape Ecology, and of global change.


Author(s):  
Brandon D Hoenig ◽  
Allison M Snider ◽  
Anna M Forsman ◽  
Keith A Hobson ◽  
Steven C Latta ◽  
...  

Abstract Identifying the composition of avian diets is a critical step in characterizing the roles of birds within ecosystems. However, because birds are a diverse taxonomic group with equally diverse dietary habits, gaining an accurate and thorough understanding of avian diet can be difficult. In addition to overcoming the inherent difficulties of studying birds, the field is advancing rapidly, and researchers are challenged with a myriad of methods to study avian diet, a task that has only become more difficult with the introduction of laboratory techniques to dietary studies. Because methodology drives inference, it is important that researchers are aware of the capabilities and limitations of each method to ensure the results of their study are interpreted correctly. However, few reviews exist which detail each of the traditional and laboratory techniques used in dietary studies, with even fewer framing these methods through a bird-specific lens. Here, we discuss the strengths and limitations of morphological prey identification, DNA-based techniques, stable isotope analysis, and the tracing of dietary biomolecules throughout food webs. We identify areas of improvement for each method, provide instances in which the combination of techniques can yield the most comprehensive findings, introduce potential avenues for combining results from each technique within a unified framework, and present recommendations for the future focus of avian dietary research.


2020 ◽  
Vol 111 ◽  
pp. 106022 ◽  
Author(s):  
Autumn Oczkowski ◽  
Betty Kreakie ◽  
M. Nicole Gutierrez ◽  
Marguerite Pelletier ◽  
Mike Charpentier ◽  
...  

mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Ashley Shade

ABSTRACT Microbiomes underpin biogeochemical processes, sustain the bases of food webs, and recycle carbon and nutrients. Thus, microbes are frontline players in determining ecosystem responses to environmental change. My research team and I investigate the causes and consequences of microbiome stability. Our primary objective is to understand the responses of complex microbiomes to stressors associated with environmental change. This work is important because Earth is changing rapidly and drastically, and these changes are expected to have serious consequences for ecosystems, their inhabiting organisms, and their microbiomes. Therefore, we aim to understand the repercussions of alterations to microbiome structure and functions and to use this information to predict the responses of microbiomes to stressors. This research is critical to prepare for, respond to, and potentially moderate environmental change. We anticipate that the results of our research will contribute toward these goals and will broadly inform management or manipulation of microbiomes toward desired functions.


Author(s):  
István Tátrai ◽  
Kálmán Mátyás ◽  
János Korponai ◽  
Gábor Paulovits ◽  
Piroska Pomogyi ◽  
...  

2003 ◽  
Vol 3 ◽  
pp. 613-622 ◽  
Author(s):  
Karl E. Havens ◽  
Binhe Gu ◽  
Brian Fry ◽  
Carol Kendall

The food webs of littoral, pelagic, and littoral-pelagic ecotone (interface) regions of a large subtropical lake were investigated using stable isotope ratio methods, expanding the focus of a previous fish-only study to include other food web components such as primary producers and invertebrates. In these food webs, δ13C increased ~4o/oo and δ15N increased ~10o/oo from primary producers to fish. The δ15N of fish was ~9o/oo in the littoral zone, ~10 o/oo in the ecotone, and ~12o/oo in the pelagic zone. The cross-habitat enrichment in fish15N corresponded with both an increase in the size of fish and an increase in the δ15N of primary consumers (mollusks). Despite larger body size in the pelagic zone, fish in all three habitats appear to occur at the same average trophic level (TL = 4), assuming an enrichment factor of 3.4o/oo per trophic level, and normalizing to the δ15N of primary consumers.


Sign in / Sign up

Export Citation Format

Share Document