Polychem Coatings Unveils Powder Coating Color Trends

2020 ◽  
Vol 2020 (3) ◽  
pp. 3
Keyword(s):  
TAPPI Journal ◽  
2011 ◽  
Vol 10 (9) ◽  
pp. 17-23 ◽  
Author(s):  
ANNE RUTANEN ◽  
MARTTI TOIVAKKA

Coating color stability, as defined by changes in its solid particle fraction, is important for runnability, quality, and costs of a paper coating operation. This study sought to determine whether the size or density of particles is important in size segregation in a pigment coating process. We used a laboratory coater to study changes in coating color composition during coating operations. The results suggest that size segregation occurs for high and low density particles. Regardless of the particle density, the fine particle size fraction (<0.2 μm) was the most prone for depletion, causing an increase in the average size of the particles. Strong interactions between the fine particles and other components also were associated with a low depletion tendency of fine particles. A stable process and improved efficiency of fine particles and binders can be achieved by controlling the depletion of fine particles.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


2017 ◽  
Vol 71 (8) ◽  
pp. 850-854
Author(s):  
Kazutaka Kasuga ◽  
Koichi Tadaki ◽  
Kaori Sasaki

2006 ◽  
Vol 60 (12) ◽  
pp. 1786-1797
Author(s):  
Hisashi Matsui
Keyword(s):  

2020 ◽  
Vol 12 (4) ◽  
pp. 1477
Author(s):  
Shahram Sheikhi ◽  
Eduard Mayer ◽  
Jochen Maaß ◽  
Florian Wagner

Implementing digitalization in the field of production represents a major hurdle for some small- and medium-sized enterprises (SMEs) due to the ensuing demands on employees and, in some cases, the significant financial investment required. The RobReLas research project has developed a system whose purpose is to enable an economical solution to this dilemma for SMEs in the field of automated, robot-based reconditioning of components. A laser scanner was integrated in the robot’s control. The data generated by the scanner are used to mathematically describe the virtual area of the surface to be laser-treated. The scanner recognizes the relevant area within the robot’s predefined work space by defining the maximum length and width of the relevant component. The system then automatically applies predefined and qualified repair strategies in the virtual area. Tests on nickel-based blades demonstrated the system’s economic potential, showing a reduction in reconditioning time of about 70% compared to the conventional reconditioning method. The main advantage of the system is the fact that a basic knowledge of operating robots is sufficient for the attainment of repeatable results. Further, no additional CAD/CAM workstations are required for implementation.


2015 ◽  
Vol 119 (3) ◽  
pp. 853-858 ◽  
Author(s):  
Aniruddha Kumar ◽  
Manisha Prasad ◽  
Shailini Shail ◽  
R. B. Bhatt ◽  
P. G. Behere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document