Disproportionate single-species contribution to canopy-soil nutrient flux in an Amazonian rainforest

2012 ◽  
Vol 267 ◽  
pp. 40-49 ◽  
Author(s):  
Sonja Germer ◽  
Alexander Zimmermann ◽  
Christopher Neill ◽  
Alex V. Krusche ◽  
Helmut Elsenbeer
1989 ◽  
Vol 18 (4) ◽  
pp. 403-410 ◽  
Author(s):  
J. W. Gaskin ◽  
J. F. Dowd ◽  
W. L. Nutter ◽  
W. T. Swank
Keyword(s):  

2008 ◽  
Vol 318 (1-2) ◽  
pp. 47-61 ◽  
Author(s):  
Catherine L. Cardelús ◽  
Michelle C. Mack ◽  
Carrie Woods ◽  
Jennie DeMarco ◽  
Kathleen K. Treseder

2001 ◽  
Vol 52 (3) ◽  
pp. 377 ◽  
Author(s):  
J. Jackson ◽  
A. J. Ash

To investigate the effects of eucalypt trees on pasture in open eucalypt woodlands of north-eastern Queensland, 2 common native pasture species, Chrysopogon fallaxand Heteropogon contortus, were grown in soil collected from under tree canopies and inter-canopy areas. These soils were collected from 2 localities that differed in soil fertility. The objective was to determine whether trees enhanced soil nutrient levels beneath their canopies and whether such changes affected pasture productivity and quality. It was hypothesised that tree effects would be greater when overall soil fertility was low. Shade and water stress treatments, which aimed to simulate field conditions, were also imposed to investigate their independent and interactive effects on plant growth. Chemical analyses showed that nutrient levels were higher in under-canopy soils, and plants grown in under-canopy soil produced 42% more biomass than plants in outside-canopy soil. This increase in biomass was significantly greater when the soil was from the low fertility site than from the high fertility site. Leaf quality, in terms of N and P concentration and dry matter digestibility (DMD), was generally higher in plants in under-canopy soil. Shading reduced plant root biomass but had no effects on above ground biomass or leaf quality. Water stress reduced above and below ground biomass and increased leaf quality. Shading and water stress effects were greater in plants in the more fertile soil types. Simulated ‘under-canopy’ plants (shaded, water-stressed plants in under-canopy soil) produced more biomass and had higher leaf N concentration and DMD than simulated ‘outside-canopy’ plants (unshaded, well-watered plants in outside-canopy soil). In a pastoral context, trees in tropical woodlands are generally considered in terms of their competitive effect on pasture productivity. This study has demonstrated that soil nutrient availability is enhanced under eucalypt canopies. The biomass results indicate that this effect is greater when overall soil fertility conditions are low. These enhanced soil nutrient conditions influence forage productivity and quality. Such positive benefits should be considered when management decisions are taken to remove or kill trees in eucalypt woodlands.


2021 ◽  
Vol 4 ◽  
Author(s):  
John T. Van Stan ◽  
Salli F. Dymond ◽  
Anna Klamerus-Iwan

To date, the perspective of forest ecohydrologists has heavily focused on leaf-water interactions – leaving the ecohydrological roles of bark under-studied, oversimplified, or omitted from the forest water cycle. Of course, the lack of study, oversimplification, or omission of processes is not inherently problematic to advancing ecohydrological theory or operational practice. Thus, this perspective outlines the relevance of bark-water interactions to advancing ecohydrological theory and practice: (i) across scales (by briefly examining the geography of bark); (ii) across ecosystem compartments (i.e., living and dead bark on canopies, stems, and in litter layers); and, thereby, (iii) across all major hydrologic states and fluxes in forests (providing estimates and contexts where available in the scant literature). The relevance of bark-water interactions to biogeochemical aspects of forest ecosystems is also highlighted, like canopy-soil nutrient exchanges and soil properties. We conclude that a broad ecohydrological perspective of bark-water interactions is currently merited.


Author(s):  
Mary Beth Downs ◽  
Wilson Ribot ◽  
Joseph W. Farchaus

Many bacteria possess surface layers (S-layers) that consist of a two-dimensional protein lattice external to the cell envelope. These S-layer arrays are usually composed of a single species of protein or glycoprotein and are not covalently linked to the underlying cell wall. When removed from the cell, S-layer proteins often reassemble into a lattice identical to that found on the cell, even without supporting cell wall fragments. S-layers exist at the interface between the cell and its environment and probably serve as molecular sieves that exclude destructive macromolecules while allowing passage of small nutrients and secreted proteins. Some S-layers are refractory to ingestion by macrophages and, generally, bacteria are more virulent when S-layers are present.When grown in rich medium under aerobic conditions, B. anthracis strain Delta Sterne-1 secretes large amounts of a proteinaceous extractable antigen 1 (EA1) into the growth medium. Immunocytochemistry with rabbit polyclonal anti-EAl antibody made against the secreted protein and gold-conjugated goat anti-rabbit IgG showed that EAI was localized at the cell surface (fig 1), which suggests its role as an S-layer protein.


VASA ◽  
2020 ◽  
pp. 1-6
Author(s):  
Hanji Zhang ◽  
Dexin Yin ◽  
Yue Zhao ◽  
Yezhou Li ◽  
Dejiang Yao ◽  
...  

Summary: Our meta-analysis focused on the relationship between homocysteine (Hcy) level and the incidence of aneurysms and looked at the relationship between smoking, hypertension and aneurysms. A systematic literature search of Pubmed, Web of Science, and Embase databases (up to March 31, 2020) resulted in the identification of 19 studies, including 2,629 aneurysm patients and 6,497 healthy participants. Combined analysis of the included studies showed that number of smoking, hypertension and hyperhomocysteinemia (HHcy) in aneurysm patients was higher than that in the control groups, and the total plasma Hcy level in aneurysm patients was also higher. These findings suggest that smoking, hypertension and HHcy may be risk factors for the development and progression of aneurysms. Although the heterogeneity of meta-analysis was significant, it was found that the heterogeneity might come from the difference between race and disease species through subgroup analysis. Large-scale randomized controlled studies of single species and single disease species are needed in the future to supplement the accuracy of the results.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
ASHOK KUMAR VERMA
Keyword(s):  

An attempt was made to find the ichthyo-diversity of Muntjibpur pond of Allahabad. Systematic surveys were conducted during a period of one year. A total of 13 species of fishes belonging to 12 genera, 8 families and 5 orders were identified. Siluriformes order is represented by 5 genera and 5 species while Cypriniformes order by 4 genera and 5 species. Each of the orders Clupeiformes, Osteoglossiformes and Ophiocephaliformes is represented by single genus and single species.


Sign in / Sign up

Export Citation Format

Share Document