Earthworm density, casting activities and its impact on canopy soil nutrient profile under different aboveground vegetations

2011 ◽  
Vol 31 (3) ◽  
pp. 227-236 ◽  
Author(s):  
Surindra Suthar
2008 ◽  
Vol 318 (1-2) ◽  
pp. 47-61 ◽  
Author(s):  
Catherine L. Cardelús ◽  
Michelle C. Mack ◽  
Carrie Woods ◽  
Jennie DeMarco ◽  
Kathleen K. Treseder

2001 ◽  
Vol 52 (3) ◽  
pp. 377 ◽  
Author(s):  
J. Jackson ◽  
A. J. Ash

To investigate the effects of eucalypt trees on pasture in open eucalypt woodlands of north-eastern Queensland, 2 common native pasture species, Chrysopogon fallaxand Heteropogon contortus, were grown in soil collected from under tree canopies and inter-canopy areas. These soils were collected from 2 localities that differed in soil fertility. The objective was to determine whether trees enhanced soil nutrient levels beneath their canopies and whether such changes affected pasture productivity and quality. It was hypothesised that tree effects would be greater when overall soil fertility was low. Shade and water stress treatments, which aimed to simulate field conditions, were also imposed to investigate their independent and interactive effects on plant growth. Chemical analyses showed that nutrient levels were higher in under-canopy soils, and plants grown in under-canopy soil produced 42% more biomass than plants in outside-canopy soil. This increase in biomass was significantly greater when the soil was from the low fertility site than from the high fertility site. Leaf quality, in terms of N and P concentration and dry matter digestibility (DMD), was generally higher in plants in under-canopy soil. Shading reduced plant root biomass but had no effects on above ground biomass or leaf quality. Water stress reduced above and below ground biomass and increased leaf quality. Shading and water stress effects were greater in plants in the more fertile soil types. Simulated ‘under-canopy’ plants (shaded, water-stressed plants in under-canopy soil) produced more biomass and had higher leaf N concentration and DMD than simulated ‘outside-canopy’ plants (unshaded, well-watered plants in outside-canopy soil). In a pastoral context, trees in tropical woodlands are generally considered in terms of their competitive effect on pasture productivity. This study has demonstrated that soil nutrient availability is enhanced under eucalypt canopies. The biomass results indicate that this effect is greater when overall soil fertility conditions are low. These enhanced soil nutrient conditions influence forage productivity and quality. Such positive benefits should be considered when management decisions are taken to remove or kill trees in eucalypt woodlands.


2021 ◽  
Vol 4 ◽  
Author(s):  
John T. Van Stan ◽  
Salli F. Dymond ◽  
Anna Klamerus-Iwan

To date, the perspective of forest ecohydrologists has heavily focused on leaf-water interactions – leaving the ecohydrological roles of bark under-studied, oversimplified, or omitted from the forest water cycle. Of course, the lack of study, oversimplification, or omission of processes is not inherently problematic to advancing ecohydrological theory or operational practice. Thus, this perspective outlines the relevance of bark-water interactions to advancing ecohydrological theory and practice: (i) across scales (by briefly examining the geography of bark); (ii) across ecosystem compartments (i.e., living and dead bark on canopies, stems, and in litter layers); and, thereby, (iii) across all major hydrologic states and fluxes in forests (providing estimates and contexts where available in the scant literature). The relevance of bark-water interactions to biogeochemical aspects of forest ecosystems is also highlighted, like canopy-soil nutrient exchanges and soil properties. We conclude that a broad ecohydrological perspective of bark-water interactions is currently merited.


2012 ◽  
Vol 267 ◽  
pp. 40-49 ◽  
Author(s):  
Sonja Germer ◽  
Alexander Zimmermann ◽  
Christopher Neill ◽  
Alex V. Krusche ◽  
Helmut Elsenbeer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jagdish Chandra Kuniyal ◽  
Priyanka Maiti ◽  
Sandeep Kumar ◽  
Anand Kumar ◽  
Nisha Bisht ◽  
...  

AbstractEco-restoration initiative work in the high altitude Dayara pastureland (3501 m) from the Indian Himalayan Region has been considered to be one of the successful field demonstration against both natural and anthropogenic degradation. The present study therefore attempts to assess the implications of entire eco-restoration model as practiced by Department of Forest, Government of Uttarakhand in 2019. Its assessment was done by calculating restoration success index by way of considering three categories, viz., direct management measure (M), environmental desirability (E) and socio-economic feasibility (SE) considering 22 individual variables. ‘M’ comprised both biotic and abiotic pressures. Grazing and tourism were biotic, while abiotic pressure was considered mainly soil erosion in alpine area due to topographic fragility. Above ground vegetation profile and below ground soil nutrient profile (N, P, K, pH and water holding capacity) were analyzed in ‘E’ component. In the last but not least, ‘SE’ was analyzed to assess the social acceptability of the local communities and stakeholders who are supposed to be ultimate beneficiary of alike interventions. Direct management measure was found with the variable index score of 0.8 indicating the higher score as compared to environmental desirability (0.56). Under direct management measure, grazing and tourists’ carrying capacity of the area was analyzed with high management needs to call the region sustainable in terms of availability of bio-resources. The ecosystem index score was evaluated for the reference (81.94), treated (64.5) and untreated zones (52.03), wherein increasing profile of these values were found. The outcomes like improved vegetation profile in terms of total herb density, soil nutrient profile of the restored area along with soil pH (4.96) and water holding capacity (49.85%) were found to be restored significantly along with controlling 169.64 tonne year-1 soil erosion from draining. The assessment of grazing pattern of 118 migratory Cow Unit (CU) (76 horse/mule and 18 sheep/goat, already controlled), 318 local CU (30 horse/mule and 187 sheep/goat) were calculated and recommended to be controlled. Tourists’ carrying capacity of 274 tourists per day and manual removal of Rumex nepalensis at the shepherd camping site were found to be worth to apply in the area. Use of biodegradable but locally sourced material and engaging local villagers in this endeavor were also found to be in harmony with SDG Goal 1 (no poverty). Therefore, the restoration and its evaluation model could have its future prospects to prove as a successful restoration practice. This restoration practice could not only be worth in high altitude degraded alpine pastures of the Indian Himalayan Region but also to other mountain alpine and sub-alpine ecosystems.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Sign in / Sign up

Export Citation Format

Share Document