Fertilization and pine straw raking in slash pine plantations: P removals and effects on total and mobile soil, foliage and litter P pools

2016 ◽  
Vol 376 ◽  
pp. 310-320 ◽  
Author(s):  
Elsa D. Chevasco ◽  
Patrick J. Minogue ◽  
Cheryl Mackowiak ◽  
Nicholas B. Comerford
2021 ◽  
Author(s):  
Paris Lambdin

Abstract This species has had limited distribution from its native habitats in the southern region of the USA since its discovery and description (Lobdell, 1930). O. acuta appears to be restricted to feeding on species of pines and loblolly pine, Pinus taeda, is its preferred food source. In its native habitat, populations seldom reach pest status due to the presence of natural enemies. In 1988, it was transported to a pine seed orchard in China on slash pine, Pinus elliottii, scions purchased in the USA. Sun et al. (1996) noted that O. acuta-infested slash pine scions leaving the USA and entering China in 1988 were not subjected to the quarantine restrictions of either country. The loblolly pine mealybug quickly became established and rapidly spread throughout pine plantations in the Guangdong Province, China where it threatens both native and introduced species of pines in the region.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1300
Author(s):  
Xiaogang Ding ◽  
Xiaochuan Li ◽  
Ye Qi ◽  
Zhengyong Zhao ◽  
Dongxiao Sun ◽  
...  

Stocks and stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) in ultisols are not well documented for converted forests. In this study, Ultisols were sampled in 175 plots from one type of secondary forest and four plantations of Masson pine (Pinus massoniana Lamb.), Slash pine (Pinus elliottii Engelm.), Eucalypt (Eucalyptus obliqua L’Hér.), and Litchi (Litchi chinensis Sonn., 1782) in Yunfu, Guangdong province, South China. Five layers of soil were sampled with a distance of 20 cm between two adjacent layers up to a depth of 100 cm. We did not find interactive effects between forest type and soil layer depth on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) concentrations and storages. Storage of SOC was not different between secondary forests and Eucalypt plantations, but SOC of these two forest types were lower than that in Litchi, Masson pine, and Slash pine plantations. Soil C:P was higher in Slash pine plantations than in secondary forests. Soil CNP showed a decreasing trend with the increase of soil depth. Soil TP did not show any significant difference among soil layers. Soil bulk density had a negative contribution to soil C and P stocks, and longitude and elevation were positive drivers for soil C, N, and P stocks. Overall, Litchi plantations are the only type of plantation that obtained enhanced C storage in 0–100 cm soils and diverse N concentrations among soil layers during the conversion from secondary forests to plantations over ultisols.


2021 ◽  
Vol 39 (3) ◽  
pp. 115-122
Author(s):  
Zachary Singh ◽  
Adam Maggard ◽  
Rebecca Barlow ◽  
John Kush

Abstract Longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm.) are two southern pine species that are popular for producing pine straw for landscaping. The objective of this research was to determine the response of soil properties and weed growth to the application of pine straw. Longleaf pine, slash pine, and two non-mulched controls (with and without chemical weed control) were tested. Volumetric soil water content, soil nutrients, soil temperature, weed biomass, and seedling growth were measured. Compared to non-mulched controls, both longleaf and slash pine plots had a greater soil moisture during extended periods without rainfall in the full sun environment. When soil temperatures increased, mulched plots had lower soil temperature relative to non-mulched plots. Soil pH and soil nutrients were generally similar between pine straw types with few significant differences in measured variables. Both pine straw treatments reduced weed growth and longleaf pine maintained a greater straw depth over the study period compared to slash pine, but no differences were observed for decomposition. These results indicate that longleaf pine straw and slash pine straw perform equally as well in terms of increasing soil moisture, moderating soil temperature, and reducing weed growth compared to not using mulch. Index words: Pinus elliottii, Pinus palustris, organic mulch, soil properties, landscaping. Species used in this study: Shumard oak, Quercus shumardii Buckl., Eastern redbud, Cercis canadensis L.


1988 ◽  
Vol 12 (4) ◽  
pp. 259-261 ◽  
Author(s):  
J. David Lenhart ◽  
W. Thomas McGrath ◽  
Terry L. Hackett

Abstract Five surveys of pine plantations in East Texas over an 18-year period (1969-1987) indicated that fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme Birdsall and Snow) infection rates have increased to current levels of about 50% on slash pine (Pinus elliottii Engelm.) and are continuing to increase on loblolly pine (Pinus taeda L.) to 10-15% levels. South. J. Appl. For. 12(4):259-261.


1989 ◽  
Vol 13 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Robert L. Bailey ◽  
Thomas M. Burgan ◽  
Eric J. Jokela

Abstract Data from 263 plots in a regional fertilization study of midrotation-aged slash pine plantations were used to fit prediction equations for basal area, trees per acre, stand average dominant height, diameter distributions, and individual tree heights. The equations include N and P fertilizationrates and CRIFF soil groups as predictor variables. The survival model also accounts for the accelerating effect of fusiform rust on mortality rate. Using published tree volume equations, the prediction of volumes by dbh class for fertilized slash pine plantations is now possible. This integratedsystem of equations is available as a user-friendly computer program that can calculate expected yields by diameter class and aid the forester in evaluating investment opportunities that include forest fertilization. South. J. Appl. For. 13(2):76-80.


1978 ◽  
Vol 2 (2) ◽  
pp. 59-61
Author(s):  
Richard C. Field ◽  
Jerome L. Clutter ◽  
Earle P. Jones

Abstract Equations are presented for estimating the volume removed in thinning from below when the desired reduction in basal area or number of stems is known. The estimators are based on data from slash pine plantations but the methods may be useful for other species.


2009 ◽  
Vol 33 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Dean W. Coble

Abstract A new compatible whole-stand growth-and-yield model to predict total tree cubic-foot volume per acre yield (outside and inside bark) was developed for unmanaged loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) plantations in East Texas. This model was compared with the noncompatible whole-stand model of Lenhart (<xref ref-type="bibr" rid="B15-2127">Lenhart, 1996</xref>, Total and partial stand-level yield prediction for loblolly and slash pine plantations in east Texas, South. J. Appl. For. 20(1):36–41) and the <xref ref-type="bibr" rid="B15-2127">Lenhart (1996)</xref> model refit to current data. For the two species, all three models were evaluated with independent observed data. The model developed in this study outperformed both Lenhart models in prediction of future yield and basal area per acre for all age classes combined and by 5-year age classes. The Lenhart models consistently overestimated yield and basal area per acre. All three models predicted surviving trees per acre similarly. An example is also provided to show users how to use the new whole-stand model.


Sign in / Sign up

Export Citation Format

Share Document