Long-term impacts of road disturbance on old-growth coast redwood forests

2021 ◽  
Vol 499 ◽  
pp. 119595
Author(s):  
Cody R. Dangerfield ◽  
Steve L. Voelker ◽  
Christopher A. Lee
2009 ◽  
Vol 258 (7) ◽  
pp. 1038-1054 ◽  
Author(s):  
Craig G. Lorimer ◽  
Daniel J. Porter ◽  
Mary Ann Madej ◽  
John D. Stuart ◽  
Stephen D. Veirs ◽  
...  

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
David Cowman ◽  
Will Russell

Abstract Background With the prevalence of catastrophic wildfire increasing in response to widespread fire suppression and climate change, land managers have sought methods to increase the resiliency of landscapes to fire. The application of prescribed burning in ecosystems adapted to fire can reduce fuel load and fire potential while minimizing impacts to the ecosystem as a whole. Coast redwood forests have historically experienced fire from both natural and anthropogenic sources, and are likely to respond favorably to its reintroduction. Results Random sampling was conducted in three burned sites and in three unburned sites, in an old-growth coast redwood (Sequoia sempervirens [D. Don] Endl.) forest. Data were collected on fuel, forest structure, and understory species composition and compared between treatments. Downed woody fuel, duff depth, litter depth, and density of live woody fuels were found to be significantly lower on sites treated with fire compared to unburned sites. Density of the dominant overstory canopy species, coast redwood and Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco), remained consistent between treatments, and the abundance of herbaceous understory plant species was not significantly altered by burning. In addition, both downed woody fuel and live fuel measures were positively correlated with time since last burn, with the lowest measures on the most recently burned sites. Conclusions Our results indicated that the use of prescribed burning in old-growth redwood forests can provide beneficial reductions in live and dead surface fuels with minimal impacts to overstory trees and understory herbaceous species.


Fire Ecology ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 85-105 ◽  
Author(s):  
Allyson L. Carroll ◽  
Stephen C. Sillett ◽  
Robert Van Pelt

2012 ◽  
Author(s):  
Richard B. Standiford ◽  
Theodore J. Weller ◽  
Douglas D. Piirto ◽  
John D Stuart

2000 ◽  
Vol 16 (6) ◽  
pp. 883-894 ◽  
Author(s):  
SIMON J. GROVE ◽  
STEPHEN M. TURTON ◽  
DANNY T. SIEGENTHALER

Tropical Cyclone ‘Rona’ crossed the coast of the Daintree lowlands of northeastern Australia in 1999. This study reports on its impact on forest canopy openness at six lowland rain forest sites with contrasting management histories (old-growth, selectively logged and regrowth). Percentage canopy openness was calculated from individual hemispherical photographs taken from marked points below the forest canopy at nine plots per site 3–4 mo before the cyclone, and at the same points a month afterwards. Before the cyclone, when nine sites were visited, canopy openness in old-growth and logged sites was similar, but significantly higher in regrowth forest. After the cyclone, all six revisited sites showed an increase in canopy openness, but the increase was very patchy amongst plots and sites and varied from insignificant to severe. The most severely impacted site was an old-growth one, the least impacted a logged one. Although proneness to impact was apparently related to forest management history (old-growth being the most impacted), underlying local topography may have had an equally strong influence in this case. It was concluded that the likelihood of severe impact may be determined at the landscape-scale by the interaction of anthropogenic with meteorological, physiographic and biotic factors. In the long term, such interactions may caution against pursuing forest management in cyclone-prone areas.


2011 ◽  
Vol 41 (4) ◽  
pp. 763-772 ◽  
Author(s):  
Benjamin S. Ramage ◽  
Kevin L. O’Hara ◽  
Alison B. Forrestel

Sudden oak death is dramatically altering forests throughout coastal California, but little is known about the communities that are assembling in affected areas. This emerging disease, caused by the exotic pathogen Phytophthora ramorum (S. Werres, A.W.A.M. de Cock), has had especially severe effects on tanoak ( Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), a broadleaf evergreen that is abundant in forests dominated by coast redwood ( Sequoia sempervirens (D.Don) Endl.). Tanoak, a valuable food source to numerous wildlife species, is unlikely to successfully regenerate in diseased areas, and thus, affected redwood forests are transitioning to a novel state. In this study, to predict which species might replace tanoak, we investigated regeneration patterns in heavily impacted stands in Marin County, California. Our main findings were as follows: (i) despite reductions in canopy cover, there is no evidence that any species other than tanoak has exhibited a regenerative response to tanoak mortality, (ii) the regeneration stratum was dominated by redwood and tanoak (other tree species were patchy and (or) scarce), and (iii) some severely affected areas lacked sufficient regeneration to fully re-occupy available growing space. Our results indicate that redwood is likely to initially re-occupy the majority of the ground relinquished by tanoak, but also provide evidence that longer-term trajectories are unresolved, and may be highly responsive to management interventions.


2017 ◽  
Vol 399 ◽  
pp. 197-205 ◽  
Author(s):  
Peter Jaloviar ◽  
Milan Saniga ◽  
Stanislav Kucbel ◽  
Ján Pittner ◽  
Jaroslav Vencurik ◽  
...  

Biotropica ◽  
2003 ◽  
Vol 35 (3) ◽  
pp. 306-317 ◽  
Author(s):  
Esther Fichtler ◽  
Deborah A. Clark ◽  
Martin Worbes

Sign in / Sign up

Export Citation Format

Share Document