4-hydroxynonenal contributes to macrophage foam cell formation through increased expression of class A scavenger receptor at the level of translation

2008 ◽  
Vol 45 (2) ◽  
pp. 177-183 ◽  
Author(s):  
Mi R. Yun ◽  
Dong S. Im ◽  
Seung J. Lee ◽  
Joong W. Woo ◽  
Ki W. Hong ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e87059 ◽  
Author(s):  
Fang Fang Liu ◽  
Xiao Wu ◽  
Yun Zhang ◽  
Yan Wang ◽  
Fan Jiang

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Yiliang Chen ◽  
David Kennedy ◽  
Zhichuan Li ◽  
Zijian Xie ◽  
Roy L Silverstein

Atherosclerosis, the leading cause of death in the developed countries, is characterized by macrophage foam cell formation. We previously showed that CD36, a scavenger receptor highly expressed in macrophages, mediates oxidized-LDL uptake, contributes to intracellular cholesterol accumulation and foam cell formation, and regulates macrophage migration and pro-inflammatory signaling. Consistently, cd36 deletion in mice protects from diet-induced atherosclerosis. Mechanistically, we discovered a novel signaling pathway, in which oxidized LDL (oxLDL) binding to CD36 activates Lyn kinase and initiates a cascade that is necessary for the pro-atherogenic cellular phenotype. How CD36 regulates Lyn kinase remains undefined. Since we previously showed that the Na/K-ATPase (NKA) regulates Src family kinases, including Lyn, we hypothesized that CD36 regulates Lyn kinase via an interaction with NKA. We used co-immunoprecipitation, FRET, and a novel cross linking assay to demonstrate that CD36 physically associates with NKA on the macrophage surface. Using a Lyn kinase activity assay, we showed that the interaction regulates Lyn kinase activity in response to oxLDL in macrophages. Moreover, a newly developed peptide inhibitor specifically blocked Lyn activation in response to oxLDL and attenuated oxLDL-stimulated cholesterol uptake (135.6±3.4 μM cholesterol/mg protein after 24 hours vs 173.8±7.7 μM cholesterol/mg protein in vehicle treated cells; p=0.0005; n=6). Taken together, we conclude that CD36 signals through NKA to regulate Lyn kinase activity in macrophages, which may be a molecular mechanism underlying cholesterol overloading and foam cell formation.


2007 ◽  
Vol 293 (6) ◽  
pp. E1820-E1827 ◽  
Author(s):  
Mariarosaria Napolitano ◽  
Clara De Pascale ◽  
Caroline Wheeler-Jones ◽  
Kathleen M. Botham ◽  
Elena Bravo

The effect of lycopene on macrophage foam cell formation induced by modified low-density lipoprotein (LDL) was studied. Human monocyte-derived macrophages (HMDM) were incubated with lycopene in the presence or absence of native LDL (nLDL) or LDL modified by oxidation (oxLDL), aggregation (aggLDL), or acetylation (acLDL). The cholesterol content, lipid synthesis, scavenger receptor activity, and the secretion of inflammatory [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory (IL-10) cytokines was determined. Lycopene was found to decrease the synthesis of cholesterol ester in incubations without LDL or with oxLDL while triacylglycerol synthesis was reduced in the presence of oxLDL and aggLDL. Scavenger receptor activity as assessed by the uptake of acLDL was decreased by ∼30% by lycopene. In addition, lycopene inhibited IL-10 secretion by up to 74% regardless of the presence of nLDL or aggLDL but did not affect IL-1β or TNF-α release. Lycopene also reduced the relative abundance of mRNA transcripts for scavenger receptor A (SR-A) in THP-1 macrophages treated with aggLDL. These findings suggest that lycopene may reduce macrophage foam cell formation induced by modified LDL by decreasing lipid synthesis and downregulating the activity and expression of SR-A. However, these effects are accompanied by impaired secretion of the anti-inflammatory cytokine IL-10, suggesting that lycopene may also exert a concomitant proinflammatory effect.


2021 ◽  
Vol 41 (3) ◽  
pp. 1076-1091
Author(s):  
Imam Manggalya Adhikara ◽  
Keiko Yagi ◽  
Dyah Samti Mayasari ◽  
Yoko Suzuki ◽  
Koji Ikeda ◽  
...  

Objective: Chondroitin sulfate proteoglycans are the primary constituents of the macrophage glycosaminoglycan and extracellular microenvironment. To examine their potential role in atherogenesis, we investigated the biological importance of one of the chondroitin sulfate glycosaminoglycan biosynthesis gene, ChGn-2 (chondroitin sulfate N -acetylgalactosaminyltransferase-2), in macrophage foam cell formation. Approach and Results: ChGn-2-deficient mice showed decreased and shortened glycosaminoglycans. ChGn-2 −/− /LDLr −/− (low-density lipoprotein receptor) mice generated less atherosclerotic plaque after being fed with Western diet despite exhibiting a metabolic phenotype similar to that of the ChGn-2 +/+ /LDLr −/− littermates. We demonstrated that in macrophages, ChGn-2 expression was upregulated in the presence of oxLDL (oxidized LDL), and glycosaminoglycan was substantially increased. Foam cell formation was significantly altered by ChGn-2 in both mouse peritoneal macrophages and the RAW264.7 macrophage cell line. Mechanistically, ChGn-2 enhanced oxLDL binding on the cell surface, and as a consequence, CD36—an important macrophage membrane scavenger receptor—was differentially regulated. Conclusions: ChGn-2 alteration on macrophages conceivably influences LDL accumulation and subsequently accelerates plaque formation. These results collectively suggest that ChGn-2 is a novel therapeutic target amenable to clinical translation in the future. Graphic Abstract: A graphic abstract is available for this article.


Author(s):  
Jian-Jun Lv ◽  
Hao Wang ◽  
Hong-Yong Cui ◽  
Ze-Kun Liu ◽  
Ren-Yu Zhang ◽  
...  

The persistence of macrophage-derived foam cells in the artery wall fuels atherosclerosis development. However, the mechanism of foam cell formation regulation remains elusive. We are committed to determining the role that CD147 might play in macrophage foam cell formation during atherosclerosis. In this study, we found that CD147 expression was primarily increased in mouse and human atherosclerotic lesions that were rich in macrophages and could be upregulated by ox-LDL. High-throughput compound screening indicated that ox-LDL-induced CD147 upregulation in macrophages was achieved through PI3K/Akt/mTOR signaling. Genetic deletion of macrophage CD147 protected against foam cell formation by impeding cholesterol uptake, probably through the scavenger receptor CD36. The opposite effect was observed in primary macrophages isolated from macrophage-specific CD147-overexpressing mice. Moreover, bioinformatics results indicated that CD147 suppression might exert an atheroprotective effect via various processes, such as cholesterol biosynthetic and metabolic processes, LDL and plasma lipoprotein clearance, and decreased platelet aggregation and collagen degradation. Our findings identify CD147 as a potential target for prevention and treatment of atherosclerosis in the future.


2008 ◽  
Vol 87 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Birgit Luechtenborg ◽  
Oliver Hofnagel ◽  
Gabriele Weissen-Plenz ◽  
Nick J. Severs ◽  
Horst Robenek

Sign in / Sign up

Export Citation Format

Share Document