Gas sorption-induced coal swelling kinetics and its effects on coal permeability evolution: Model development and analysis

Fuel ◽  
2017 ◽  
Vol 189 ◽  
pp. 164-177 ◽  
Author(s):  
Jie Zang ◽  
Kai Wang
2019 ◽  
Vol 17 (2) ◽  
pp. 313-327
Author(s):  
Haijun Guo ◽  
Kai Wang ◽  
Yuanping Cheng ◽  
Liang Yuan ◽  
Chao Xu

Abstract Mining is a dynamic fracture process of coal and/or rock. The structural failure of coal bodies will change the coal matrix-fracture characteristics and then affect the distribution characteristics of the coalbed methane (CBM). Because of the structural complexity of coal, the coal matrices and fractures will be assumed to the geometries with rule shapes when the gas seepage characteristics in coals are analyzed. The size of the simplified geometries is the equivalent scale of dual-porosity coal structures (i.e. the equivalent fracture width and equivalent matrix scale). In this paper, according to the reasonable assumptions with regarding to dual-porosity coal structures, a new coal permeability evolution model based on the equivalent characteristics of dual-porosity structure (ECDP model) was built and the effect of the equivalent characteristics of dual-porosity structure on the coal permeability evolution law was analyzed. It is observed that if the initial fracture porosity is constant and the equivalent matrix scale increases, the range in which the permeability of coal rises with rising gas pressure increases; if the equivalent fracture width decreases and the equivalent matrix scale is constant, the range in which the permeability of coal rises with rising gas pressure decreases. The ECDP model is more suitable for revealing the evolution law of the coal permeability when large deformations occur in the coal bodies and/or the coal structure is damaged irreversibly, especially during enhancing CBM recovery.


Author(s):  
Chao Xu ◽  
Mingyue Cao ◽  
Kai Wang ◽  
Qiang Fu ◽  
Liangliang Qin

2021 ◽  
Vol 9 (4) ◽  
pp. 577-587
Author(s):  
Wei Liu ◽  
Deyao Wu ◽  
Hao Xu ◽  
Xiangyu Chu ◽  
Wei Zhao ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2800 ◽  
Author(s):  
Xingxing Liu ◽  
Jinchang Sheng ◽  
Jishan Liu ◽  
Yunjin Hu

The evolution of coal permeability is vitally important for the effective extraction of coal seam gas. A broad variety of permeability models have been developed under the assumption of local equilibrium, i.e., that the fracture pressure is in equilibrium with the matrix pressure. These models have so far failed to explain observations of coal permeability evolution that are available. This study explores the evolution of coal permeability as a non-equilibrium process. A displacement-based model is developed to define the evolution of permeability as a function of fracture aperture. Permeability evolution is tracked for the full spectrum of response from an initial apparent-equilibrium to an ultimate and final equilibrium. This approach is applied to explain why coal permeability changes even under a constant global effective stress, as reported in the literature. Model results clearly demonstrate that coal permeability changes even if conditions of constant effective stress are maintained for the fracture system during the non-equilibrium period, and that the duration of the transient period, from initial apparent-equilibrium to final equilibrium is primarily determined by both the fracture pressure and gas transport in the coal matrix. Based on these findings, it is concluded that the current assumption of local equilibrium in measurements of coal permeability may not be valid.


2010 ◽  
Vol 83 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Jishan Liu ◽  
Zhongwei Chen ◽  
Derek Elsworth ◽  
Xiexing Miao ◽  
Xianbiao Mao

2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xuefeng Han ◽  
Tingxiang Chu ◽  
Minggao Yu ◽  
Jiangkun Chao ◽  
Zhihui Ma ◽  
...  

In order to study the dynamic change law of the porosity of the compacted broken coal under different axial stress loading, based on the environment of the broken and compacted coal in the gob, aiming at the influence of the porosity on the spontaneous combustion of the coal, combined with the fractal theory, the fractal model of the porosity of the broken coal is established. A self-designed “testing device for permeability evolution and spontaneous combustion characteristics of crushed coal under pressure” is used to carry out axial loading test on selected coal samples in the gob. By comparing and analyzing the calculated results of void dynamic evolution model and experimental data, it is found that the relative error of void dynamic evolution model is between 2.8% and 6.2%, which meets the engineering needs. According to the stress-strain curve, initial accumulation state parameters, fractal dimension of initial crushing, and particle size distribution, the change of porosity under different compacted conditions can be predicted by the model, which has certain significance for identifying the change of compacted broken coal porosity and analyzing the process of coal spontaneous combustion and oxidation.


Sign in / Sign up

Export Citation Format

Share Document