Single-cylinder engine evaluation of a multi-component Diesel surrogate fuel at partially-premixed and low-temperature combustion modes

Fuel ◽  
2019 ◽  
Vol 241 ◽  
pp. 506-518 ◽  
Author(s):  
Patrick G. Szymkowicz ◽  
Jesús Benajes
Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


Author(s):  
William F. Northrop ◽  
Stanislav V. Bohac ◽  
Jo-Yu Chin ◽  
Dennis N. Assanis

Partially premixed low temperature combustion (LTC) is an established advanced engine strategy that enables the simultaneous reduction of soot and NOx emissions in diesel engines. Measuring extremely low levels of soot emissions achievable with LTC modes using a filter smoke meter requires large sample volumes and repeated measurements to achieve the desired data precision and accuracy. Even taking such measures, doubt exists as to whether filter smoke number (FSN) accurately represents the actual smoke emissions emitted from such low soot conditions. The use of alternative fuels such as biodiesel also compounds efforts to accurately report soot emissions since the reflectivity of high levels of organic matter found on the particulate matter collected may result in erroneous readings from the optical detector. Using FSN, it is desired to report mass emissions of soot using empirical correlations derived for use with petroleum diesel fuels and conventional modes of combustion. The work presented in this paper compares the experimental results of well known formulas for calculating the mass of soot using FSN and the elemental carbon mass using thermal optical analysis (TOA) over a range of operating conditions and fuels from a four-cylinder direct-injection passenger car diesel engine. The data show that the mass of soot emitted by the engine can be accurately predicted with the smoke meter method utilizing a 3000 ml sample volume over a range of FSN from 0.02 to 1.5. Soot mass exhaust concentration calculated from FSN using the best of the literature expressions and that from TOA taken over all conditions correlated linearly with a slope of 0.99 and R2 value of 0.94. A primary implication of the work is that the level of confidence in reporting the soot mass based on FSN for low soot formation regimes such as LTC is improved for both petroleum diesel and biodiesel fuels.


Author(s):  
Carlo Beatrice ◽  
Giovanni Avolio ◽  
Nicola Del Giacomo ◽  
Chiara Guido

The present paper describes the effects of some air-path operating parameters on the performance of a modern common-rail diesel engine when it runs under Low Temperature Combustion (LTC) conditions. Aim of the experimental work was to explore the potential of the control of each parameter on the improvement of LTC application to the modern LD diesel engines for passenger cars, in order to meet future NOx emissions limits avoiding penalties in fuel consumption and drivability. In particular, the effects on LTC performance of the following operating parameters were analysed: intake air temperature, exhaust EGR cooler temperature, intake pipe pressure, exhaust pipe pressure and swirl ratio. Tests are carried out with a single-cylinder research diesel engine derived from FIAT 1.9 JTD 16V Multi-Jet in the EURO4 version. Results analysis have shown a significant influence of some examined parameters on the improvement of EGR tolerability, that has led to sensitive NOx reduction, within fixed limits in fuel consumption and smoke. On the contrary, engine behaviour is insensitive to the variation of the other air-path parameters.


Author(s):  
Prasad Divekar ◽  
Usman Asad ◽  
Xiaoye Han ◽  
Xiang Chen ◽  
Ming Zheng

Suitable cylinder charge preparation is deemed critical for the attainment of a highly homogeneous, diluted, and lean cylinder charge, which is shown to lower the flame temperature. The resultant low temperature combustion (LTC) can simultaneously reduce the NOx and soot emissions from diesel engines. This requires sophisticated coordination of multiple control systems for controlling the intake boost, exhaust gas recirculation (EGR), and fueling events. Additionally, the cylinder charge modulation becomes more complicated in the novel combustion concepts that apply port injection of low reactivity alcohol fuels to replace the diesel fuel partially or entirely. In this work, experiments have been conducted on a single cylinder research engine with diesel and ethanol fuels. The test platform is capable of independently controlling the intake boost, EGR rates, and fueling events. Effects of these control variables are evaluated with diesel direct injection and a combination of diesel direct injection and ethanol port injection. Data analyses are performed to establish the control requirements for stable operation at different engine load levels with the use of one or two fuels. The sensitivity of the combustion modes is thereby analyzed with regard to the boost, EGR, fuel types, and fueling strategies. Zero-dimensional cycle simulations have been conducted in parallel with the experiments to evaluate the operating requirements and operation zones of the LTC combustion modes. Correlations are generated between air–fuel ratio (λ), EGR rate, boost level, in-cylinder oxygen concentration, and load level using the experimental data and simulation results. Development of a real-time boost-EGR set-point determination to sustain the LTC mode at the varying engine load levels and fueling strategies is proposed.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual-fuel diesel–methane low-temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen oxide (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual-fuel LTC typically exhibits poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting CO and UHC oxidation once combustion is initiated by the first one. In this study, diesel–methane dual-fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas (NG) surrogate). A multidimensional model is first validated in comparison with the experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 crank angle degrees (CAD) and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion and emissions are investigated, again showing good agreement with the experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline still remaining at very low level (under 1 g/kWh). Furthermore, it is shown that postinjection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


Sign in / Sign up

Export Citation Format

Share Document