Calculation of hydraulic fracture induced stress and corresponding fault slippage in shale formation

Fuel ◽  
2019 ◽  
Vol 254 ◽  
pp. 115525 ◽  
Author(s):  
Kui Liu ◽  
Arash Dahi Taleghani ◽  
Deli Gao
2021 ◽  
pp. 014459872110019
Author(s):  
Weiyong Lu ◽  
Changchun He

During horizontal well staged fracturing, there is stress interference between multiple transverse fractures in the same perforation cluster. Theoretical analysis and numerical calculation methods are applied in this study. We analysed the mechanism of induced stress interference in a single fracture under different fracture spacings and principal stress ratios. We also investigated the hydraulic fracture morphology and synchronous expansion process under different fracture spacings and principal stress ratios. The results show that the essence of induced stress is the stress increment in the area around the hydraulic fracture. Induced stress had a dual role in the fracturing process. It created favourable ground stress conditions for the diversion of hydraulic fractures and the formation of complex fracture network systems, inhibited fracture expansion in local areas, stopped hydraulic fractures, and prevented the formation of effective fractures. The curves of the maximum principal stress, minimum principal stress, and induced principal stress difference with distance under different fracture lengths, different fracture spacings, and different principal stress ratios were consistent overall. With a small fracture spacing and a small principal stress ratio, intermediate hydraulic fractures were difficult to initiate or arrest soon after initiation, fractures did not expand easily, and the expansion speed of lateral hydraulic fractures was fast. Moreover, with a smaller fracture spacing and a smaller principal stress ratio, hydraulic fractures were more prone to steering, and even new fractures were produced in the minimum principal stress direction, which was beneficial to the fracture network communication in the reservoir. When the local stress and fracture spacing were appropriate, the intermediate fracture could expand normally, which could effectively increase the reservoir permeability.


2018 ◽  
Vol 10 (8) ◽  
pp. 3309-3317
Author(s):  
Ping Xiong ◽  
Wang-shui Hu ◽  
Hai-xia Hu ◽  
Hailong Liu

Abstract In this paper, whether the coal fines can be induced by shear failure during drainage process has been discussed in detail. By coupling with the percolation theory, the elasticity mechanics were used to construe the extra stresses in the formation surrounding with the hydraulic fracture. The safe window of the bottom hole pressure was also calculated from the failure envelope. The research shows that the formation pressure on the fracture surface of the coal seam is negatively related with the bottom hole pressure, and the induced stress is positively related with the bottom hole pressure during the drainage process of fractured CBM wells. The pore pressure around the fracture changed due to pore-elastic effects, which also caused a significant change of the in situ stresses. In order to avoid the breakout of the coal seam around hydraulic fracture during drainage process, the model of the reasonable bottom hole pressure is also built.


2018 ◽  
Vol 168 ◽  
pp. 133-147 ◽  
Author(s):  
Jingyu Xie ◽  
Wan Cheng ◽  
Rongjing Wang ◽  
Guosheng Jiang ◽  
Di Sun ◽  
...  

Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 556 ◽  
Author(s):  
Zhiheng Zhao ◽  
Xiao Li ◽  
Yu Wang ◽  
Bo Zheng ◽  
Bo Zhang

Fuel ◽  
2017 ◽  
Vol 206 ◽  
pp. 482-493 ◽  
Author(s):  
Peng Tan ◽  
Yan Jin ◽  
Ke Han ◽  
Bing Hou ◽  
Mian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document