minimum principal stress
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 21)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yan Qiao ◽  
Yang Zhang ◽  
Tianhong Jiang ◽  
Guobin Zhang ◽  
Qing Chen ◽  
...  

Abstract During hydraulic fracturing process of the Permian Basin in North America, the cluster spacing has been shortened to 3m, and stress shadow can no longer be ignored. Many scholars have studied the influence of stress shadows to optimize cluster spacing. For reservoirs with natural fractures, how to activate more natural fractures through hydraulic fracturing has become the purpose. However, few scholars have studied changes in the activation law of natural fractures under stress shadow conditions. This paper establishes stress change value around single fracture according to Sneddon formula, and calculates the maximum and minimum principal stress according to plane principal stress calculation formula. Considering attenuation of net pressure, stress field of multiple fractures is established, and influence of various factors on stress re-orientation is studied. Finally, considering attenuation of net pressure with distance, according to discriminant formulas of tension & shear activation, the proportion of natural fractures that are easily activated is calculated. By designing orthogonal experiments, the influence of different factors on the proportion of activated natural fractures was studied. The stress increase in the direction of the minimum principal stress is much greater than the increase in the direction of the maximum principal stress. The stress increases in the direction of the maximum principal stress at the tip of the hydraulic fracture. The tip position between hydraulic fractures is "neutralized" due to the superposition of shear stress. Stress-fracture angle and the in-situ stress difference are the common main influencing factors for both tensile and shear activation, but the net pressure has little effect on the tensile activation of natural fracture. The fracture spacing has little effect on the activation of natural fractures. When formulating the fracturing scheme, we should pay more attention to the net pressure rather than the fracture spacing. This article provides a fast calculation method for the activation state of natural fractures considering the stress shadow, which provides a reference index for activating more natural fractures and increasing the production of a single well.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yingjie Liu ◽  
Haijun Wang ◽  
Qingjie Qi ◽  
Anhu Wang ◽  
Youxin Zhao

The objective of this study was to reveal the law of overburden movement and stress evolution during the mining of super-high fully mechanized mining faces. Based on the 12401 fully mechanized mining face of Shangwan Coal Mine in Shendong, this study conducted research and analysis using the methods of similarity simulation experiment, numerical simulation, and field measurement. The results showed that the maximum and minimum principal stresses in the coal seam in front of the working face are concentrated with the advance of the working face. The degree of stress concentration increases with the increase in the advancing range, and the concentration degree of the maximum principal stress and the change gradient is greater than that of the minimum principal stress. But the range of the peak lead coal wall is lower than that of the minimum principal stress of the peak lead coal wall. The phenomenon of stress recovery exists in the goaf. With the increase in the advancing range of the working face, the degree of stress recovery gradually increases, and the degree of maximum principal stress recovery is higher than that of the minimum principal stress recovery. The large fractures observed near the working face are closely related to the underground pressure, relatively large fractures appear on the surface, and the fractures become narrower near the two pathways. Only caving and fissure zones exist in the thin bedrock overburden, and the bending subsidence zone changes with the bedrock thickness. The support strength of the hydraulic support should not be less than 1.47 MPa. This research on the overburden movement and stress evolution law of a super-high fully mechanized mining face can provide theoretical guidance for the exploitation and utilization of extrathick coal seam resources. It has broad engineering prospects.


2021 ◽  
Vol 11 (Suppl. 1) ◽  
pp. 194-200
Author(s):  
Yakup Kantaci ◽  
Sabiha Zelal Ülkü

Aim: To evaluate the stress distribution in the cortical bone under parafunctional forces with different occlusal thicknesses, monolithic zirconia with different implant diameters, and number variations in implant-supported fixed prosthetic restorations applied in patients with bruxism. Methodology: The tomographic sections of the previously registered mandible were used in order to model the mandible. Modeled bone height is 30 mm, cortical bone thickness is 1.5 mm, and trabecular bone thickness is modeled as 13 mm. By placing two implants in the created bone model, a three-member main model (Group 1), the number of implants was increased, three implants supported the Group 2 models, the diameter of the implants was increased, and the Group 3 models were created. The created Group 1, 2, 3 models, the occlusal thickness was divided into subgroups with 1.0, 1.5, and 2.0 mm, respectively (Groups A, B, and C). The groups were applied in two directions: vertical and 30o oblique. Stress values under forces were analyzed by finite element stress analysis. Results: Under vertical loading, the maximum principal stress value in the cortical bone was found to be lowest in Group 2C, and the highest maximum principal stress value was found in Group 1A. The minimum principal stress value in the cortical bone was found to be the lowest in Group 3C, and the highest minimum principal stress value was found in Group 1A. Under oblique loading, the maximum principal stress value in the cortical bone was found to be the lowest in Group 3C and the highest maximum principal stress value was found in Group 1A. The minimum principal stress value in the cortical bone was found to be lowest in Group 3C, and the highest minimum principal stress value was found in Group1A. Conclusion: Stresses caused by oblique forces are more than vertical forces. Increasing the occlusal thickness of the implant fixed prosthesis material, implant diameter, and number reduce the minimum and maximum principal stress values in the cortical   How to cite this article: Kantaci Y, Ülkü SZ. Evaluation of the stress distribution in the cortical bone caused by variations in implant applications in patients with bruxism: A three-dimensional finite element analysis. Int Dent Res 2021;11(Suppl.1):194-200. https://doi.org/10.5577/intdentres.2021.vol11.suppl1.27   Linguistic Revision: The English in this manuscript has been checked by at least two professional editors, both native speakers of English.


Author(s):  
Pengju Xing ◽  
Branko Damjanac ◽  
Joseph Moore ◽  
John McLennan

AbstractIn 2017 and 2019, injection testing was carried out in three zones in a vertical well in granite at the Frontier Observatory for Research in Geothermal Energy site near Milford, Utah, USA. In several injection cycles, flowback was implemented rather than shut-in. The goal was to explore an alternative to prolonged shut-in periods for inferring closure stress, formation compressibility, and formation permeability (permeability thickness product). The flowback procedures involved a cyclic flowback/shut-in, while pressure decreased. The flowback data are presented, and analyses are shown. The inferred closure stress(es) from flowback analyses are lower than for equivalent injection cycles that were strictly shut-in. Relatively high formation compressibility obtained from the flowback analyses indicates an extensive, fractured system. This study also includes numerical simulation of the flowback events. The numerical model shows that the rebound pressure is not necessarily the lower bound of the minimum principal stress. The signature of stiffness change can be identified as the process when the depletion mainly transitions from hydraulic fracture to natural fractures from numerical analysis. Overall, flowback potentially has advantages over shut-in because of the reduced time to closure.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yanxin He ◽  
Zhende Zhu ◽  
Wenbin Lu ◽  
Yunjin Hu ◽  
Xinghua Xie ◽  
...  

A columnar jointed rock mass is a type of rock mass with strong geometric anisotropy and high interface permeability. Its seepage characteristics pose new challenges to the construction and maintenance of the Baihetan Hydropower Station on the Jinsha River. The research object in this study is the columnar jointed rock mass (basalt) in the dam area of Baihetan Hydropower Station. Similar-material model samples of the columnar jointed rock mass with different column dip angles ( α = 0 ° ~90°) were prepared following a similar principle. A true triaxial seepage–stress coupling test was conducted to evaluate the seepage characteristics of similar-material samples with different dip angles under intermediate principal stress and minimum principal stress. The experimental results showed that the columnar jointed rock mass exhibited apparent seepage anisotropy. The relationship curve between the volume flow rate Q and the pressure gradient − d P / d L of the samples with different dip angles showed evident nonlinear seepage under intermediate principal stress, which could be well expressed using the Forchheimer equation. It shows the characteristics of a typical linear Darcy flow under minimum principal stress. The law of variations in the permeability of the samples with different dip angles under intermediate principal stress can be well expressed using the one-dimensional quadratic function equation k = a + b σ 2 + c σ 2 2 , and the law of variations in the permeability of the samples with different dip angles under minimum principal stress can be well expressed using the logarithmic function k = a + b ln σ 3 . The permeabilities of the columnar jointed rock mass with dip angles of 0°, 15°, 30°, and 60° were most sensitive to changes in stress, and the seepage characteristics increased in complexity after changes in stress.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4308
Author(s):  
Feras Haroun ◽  
Oguz Ozan

The long-term success of dental implants is greatly influenced by the use of appropriate materials while applying the “All-on-4” concept in the edentulous jaw. This study aims to evaluate the stress distribution in the “All-on-4” prosthesis across different material combinations using three-dimensional finite element analysis (FEA) and to evaluate which opposing arch material has destructive effects on which prosthetic material while offering certain recommendations to clinicians accordingly. Acrylic and ceramic-based hybrid prosthesis have been modelled on a rehabilitated maxilla using the “All-on-4” protocol. Using different materials and different supports in the opposing arch (natural tooth, and implant/ceramic, and acrylic), a multi-vectorial load has been applied. To measure stresses in bone, maximum and minimum principal stress values were calculated, while Von Mises stress values were obtained for prosthetic materials. Within a single group, the use of an acrylic implant-supported prosthesis as an antagonist to a full arch implant-supported prosthesis yielded lower maximum (Pmax) and minimum (Pmin) principal stresses in cortical bone. Between different groups, maxillary prosthesis with polyetheretherketone as framework material showed the lowest stress values among other maxillary prostheses. The use of rigid materials with higher moduli of elasticity may transfer higher stresses to the peri implant bone. Thus, the use of more flexible materials such as acrylic and polyetheretherketone could result in lower stresses, especially upon atrophic bones.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinyu Qiu ◽  
Botao Kang ◽  
Pengcheng Liu ◽  
Shengye Hao ◽  
Yanglei Zhou ◽  
...  

The hydraulic refracturing operations are often used to improve oil deliverability in the low-permeability reservoir. When the development of oilfields has entered a high water cut stage, oil deliverability can be promoted by refracturing reservoirs. The orientation of the new fracture formed by refracturing will be changed. The new formed fracture is called reorientation fracture. To calculate the oil deliverability of the refracture wells, a three-section fracture which includes reorientation fracture was established. The multiwell pressure drop superposition theory is used to derive the analytical solution of the refracture wells which includes the reorientation fracture. The numerical simulation was conducted to validate the results of the analytical solution. Comparing the refracture well deliverability of reorientation and nonreorientation, permeability, deflection angle, and the length of reorientation fracture will jointly control the productivity of refracture well. When the permeability in the direction of maximum principal stress is greater than the permeability in the direction of minimum principal stress, the capacity of reorientation fractures is relatively large. The deflection angles and the length of the reorientation fracture will directly affect the drainage area of the fracture, thus affecting productivity. The reorientation fractures generated by repeated fracturing have great potential for improving oil deliverability in the anisotropic low-permeability reservoirs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiangyu Wang ◽  
Guanghui Wang ◽  
Bowen Wu ◽  
Shuaigang Liu

Aiming at the broken failure of anchor cable in the mining roadway roof during the mining process, the lagging support scheme of anchor cable is proposed. Based on the results of indoor anchor cable pull-out test, the Cable element in FLAC3D is modified to realize the extension breaking of anchor cable in the calculation process. Furthermore, the minimum principal stress and volume strain rate mutation point are used as the failure criteria of the anchor cable. Through the comparative analysis of five anchor cable lagging support schemes of 6208 transport tunnel in Wangzhuang Mine Coal, the results demonstrate that the lagging support reduces the initial support resistance of the supporting structure. With the increase of lagging time, the ability of anchor cable to adapt to deformation increases gradually. When the lagging time reaches the gentle area of roadway deformation, its ability to adapt to deformation remains stable. Finally, it was determined that the support should start at 10–15 m of the anchor cable lagging head of the 6208 transport tunnel. Industrial tests show that the lagging support scheme ensures that the anchor cable can withstand a certain deformation, and the support body has no broken failure, which effectively controls the large mining-induced deformation of surrounding rock.


2021 ◽  
pp. 105678952110207
Author(s):  
Yaohui Gao ◽  
Zhaofeng Wang

Stress-induced instability is associated with rock damage. Here, the progressive brittle fracturing process in Jinping marble is studied by introducing two types of true triaxial pre-peak unloading tests, namely, the incrementally cyclic loading-unloading minimum principal stress test (ICM test) and the incrementally cyclic loading-unloading maximum and minimum principal stress test (ICMM test). By comprehensively analysing the irreversible strains, dissipated energy, acoustic emission (AE) characteristics and scanning electron microscopy (SEM) results, the rock damage evolution can be quantified and divided into two distinctive damage stages. At the boundary point, the irreversible strain increments reach their minimum values. In the gentle damage stage, the normalized irreversible strains increase linearly, and this process is associated with a small number of AE hits with low amplitude. The rapid damage stage is characterized by a nonlinear increase in the normalized irreversible strains, and this process is associated with a large number of AE hits with high amplitude. The dissipated energy mainly increases in the rapid damage stage. In addition, the rapid damage stage in the ICMM test mainly occurs in the last five cycles, due to the differences in the deviatoric stresses in each cycle. In both of these tests, the failure mode is principally characterized by tensile failure. Moreover, the precursory signals of rock fracturing and the influence of the loading paths on the strength are discussed.


Sign in / Sign up

Export Citation Format

Share Document