Investigation of electronic controlled direct water injection for performance and emissions of a diesel engine running on sunflower oil methyl ester

Fuel ◽  
2020 ◽  
Vol 275 ◽  
pp. 117992
Author(s):  
Vezir Ayhan
1995 ◽  
Author(s):  
Noboru Miyamoto ◽  
Hideyuki Ogawa ◽  
Jianxin Wang ◽  
Hiroshi Ohashi

Author(s):  
V. Anandram ◽  
S. Ramakrishnan ◽  
J. Karthick ◽  
S. Saravanan ◽  
G. LakshmiNarayanaRao

In the present work, the combustion, performance and emission characteristics of sunflower oil, sunflower methyl ester and its blends were studied and compared with diesel by employing them as fuel in a single cylinder, direct injection, 4.4 KW, air cooled diesel engine. Emission measurements were carried out using five-gas exhaust gas analyzer and smoke meter. The performance characteristics of Sunflower oil, Sunflower methyl ester and its blends were comparable with those of diesel. The components of exhaust such as HC, CO, NOx and soot concentration of the fuels were measured and presented as a function of load and it was observed that the blends had similar performance and emission characteristics as those of diesel. NOx emissions of sunflower oil methyl ester were slightly higher than that of diesel but that of sunflower oil was slightly lower than that of diesel. With respect to the combustion characteristics it was found that the biofuels have lower ignition delay than diesel. The heat release rate was very high for diesel than for the biofuel.


2021 ◽  
Author(s):  
Bhabani Prasanna Pattanaik ◽  
JIBITESH KUMAR PANDA ◽  
Santhosh Kumar Gugulothu ◽  
Pradeep Kumar Jena

Abstract The present work studies the influence of di-tertiary-butyl peroxide (DTBP) as a cetane-improving additive to karanja methyl ester (KME) on the combustion, performance and emission characteristics of a diesel engine. KME produced by base catalyzed transesterification of non-edible karanja oil was blended with DTBP in different volume proportions to result KMED1 (99% KME + 1% DTBP), KMED2 (98% KME + 2% DTBP), KMED3 (97% KME + 3% DTBP) and KMED5 (95% KME + 5% DTBP) fuel blends. With increase in DTBP content, viscosity was reduced, whereas the cold flow properties, cetane index and calorific value were enhanced. Engine test results exhibited improvement in brake thermal efficiency and brake specific energy consumption for all blends compared to neat KME. Combustion analysis showed improved combustion with rise in DTBP content in the blends. The CO, HC and NOx emissions with KME-DTBP blends were less compared to neat KME and the same significantly reduced with rise in DTBP percentage in the blends. This shows improved combustion due to more oxygen availability and improvement in fuel properties with addition of DTBP to KME. However, the NOx emissions were marginally higher with KME-DTBP blends compared to neat KME and diesel that may be further studied.


Sign in / Sign up

Export Citation Format

Share Document