engine emission
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
pp. 103587
Author(s):  
Li Lan ◽  
Shanhu Chen ◽  
Suning Wang ◽  
Junhuai Xiang ◽  
Long Huang ◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. 48-59
Author(s):  
S.K. Fasogbon ◽  
N.B. Jagunmolu ◽  
A.O. Adeyera ◽  
A.D. Ogunsola ◽  
O.O. Laosebikan

Engine pollutants have been a significant source of concern in most countries around the world because they are one of the major contributors to air pollution, which causes cancer, lung disorders, and other severe illnesses. The need to reduce emissions and its consequences has prompted studies into the emission profile of internal combustion engines running on particular fuels. To this end, this study employed the power of Artificial Neural Networks (ANNs) to investigate the impact of injection timing on the emission profile of Compression Ignition Engines fuelled with blends of Tropical Almond Seed Oil based-biodiesel; by conducting a series of experimental tests on the engine rig and using the results to train the ANNs; to predict the emission profile to full scale. Blend percentages, load percentages, and injection timings were used as input variables, and engine emission parameters were used as output variables, to train the network. The results showed that injection timing affect emission output of CI engines fuelled with Tropical Almond Oil based biodiesel; and for the emission pattern to be friendly, injection timing must rather be retarded and not advanced. The results also showed that for different engine emission parameters, there is a strong association between the ANN output results and the actual experimental values; with mean relative error values less than 10%, which fall within the acceptable limits. For emission of CI engines fuelled with Tropical Almond Oil based biodiesel to be friendly in pattern, injection timing must be relatively retarded. The study also concluded that Artificial Neural Network (ANN) is a reliable tool for predicting Compression Ignition Engines emission profiles.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1108
Author(s):  
Zhongmin Ma ◽  
Yuanyuan Yang ◽  
Peiting Sun ◽  
Hui Xing ◽  
Shulin Duan ◽  
...  

In order to accurately assess China’s port air pollution caused by the shipping industry, two main methods can be used to calculate the emissions of ships, including the method based on ship fuel consumption and the method based on ship activities. Both methods require accurate diesel engine emission factors, or specific emissions. In this paper, the emission characteristics of NOX, CO, CO2 and THC from 197 domestic marine diesel engines were tested under bench test conditions by a standard emission measurement system. The diesel engines were divided into six Classes, A~F, according to their power distribution, and the fuel-based emission factors and energy-based emission factors of marine main engine and auxiliary engine meeting IMO NOX Tier II standards were given. The results showed that the main engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class F were 33.25~76.58, 2.70~4.33, 3123.92~3166.47 and 1.10~2.64 kg/t-fuel, respectively; and the energy-based emission factors were 6.57~11.75, 0.56~0.81, 530.28~659.71 and 0.18~0.61 g/kW h, respectively. The auxiliary engine fuel-based emission factors of NOX, CO, CO2 and THC from Class A to Class D were 27.17~39.81, 2.66~5.12, 3113.01~3141.34 and 1.16~2.87 kg/t-fuel respectively; and their energy-based emission factors were 6.06~8.33, 0.47~0.77, 656.86~684.91 and 0.21~0.61 g/kW h, respectively. The emission factors for different types of diesel engines were closely related to the diesel engine load, and the relation between them could be expressed by quadratic polynomial or power function. The results of this paper provide valuable data for the estimation of waterway transportation exhaust emissions and comprehensive understanding of the emission characteristics of marine diesel engines.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilkay Orhan

Purpose The purpose of this study is to present the pollutant gas produced by hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) and the quantity of fuel burned from commercial aircraft at Ordu-Giresun International Airport, Turkey during the landing and take-off (LTO) cycles in 2017. Design/methodology/approach The flight data recorded by the General Directorate of State Airports Authority and the aircraft engine emission data from International Civil Aviation Organization (ICAO) Engine Exhaust Emission Databank were used for calculation. The aircraft and engine types used by the airlines for flight at Ordu-Giresun International Airport were determined. To evaluate the effect of taxi time on emission amounts, analysis and evaluations were made by taking different taxi times into consideration. Findings As a result of the emission analysis, the amount of fuel consumed by the aircraft were calculated as 6,551.52 t/y, and the emission amounts for CO, HC and NOx were estimated as 66.81, 4.20 and 79.97 t/y, respectively. Practical implications This study is aimed to reveal the effect and contribution of taxi time on the emitted emission at the airport during the LTO phase of the aircraft. Originality/value This study helps aviation authorities explain the importance of developing procedures that ensure the delivery of aircraft to flights in minimum time by raising awareness of the impact of taxi time on emitted emissions, and contributes to the determination of an aircraft emission inventory at Ordu-Giresun International Airport.


2021 ◽  
Vol 2021 (2) ◽  
pp. 63-70
Author(s):  
Paweł Głowacki ◽  
Piotr Kalina ◽  
Michal Kawalec

Abstract This article examines, based on the available information and authors’ self-assessments, the environmental impact of turbine engine exhaust gases effect on the environment in the airport space during engines flight phases in the landing and takeoff cycle (LTO). The attention of aviation professionals is drawn to the fact that the amount of exhaust from the turbine engine is so significant that it may adversely change the ambient air at the airport. Consequently, increased emission level of carbon monoxide (CO), hydrocarbons (HC) during engine start-up and idle may pose a threat to the health of ramp staff. Also, high emission levels of nitrogen oxides (NOx) during takeoff, climb, cruise and descent is not without importance for the environment around the airport space. The paper gives CO2, HC, CO and NOx emission estimations based on ICAO Engine Emission Data Bank and the number of passenger operations at a medium-sized airport. It also provides calculation results of aircraft CO2, HC, CO and NOx emission using average times of aircraft maneuvers taken from aircraft Flight Data Recorder (FDR) in the LTO cycle various aircraft types at the airport. The latter, based on actual maneuvering times, lead to significantly reduced estimates of toxic exhaust gas emission volumes.


Sign in / Sign up

Export Citation Format

Share Document