Role of the calcite-water interface in wettability alteration during low salinity waterflooding

Fuel ◽  
2020 ◽  
Vol 276 ◽  
pp. 118097
Author(s):  
Shuai Li ◽  
Matthew D. Jackson ◽  
Nicolas Agenet
2020 ◽  
Author(s):  
Henry Ivuawuogu ◽  
Yaoze Cheng ◽  
Yin Zhang ◽  
Santanu Khataniar

Author(s):  
Tao Zhang ◽  
Yiteng Li ◽  
Chenguang Li ◽  
Shuyu Sun

The past decades have witnessed a rapid development of enhanced oil recovery techniques, among which the effect of salinity has become a very attractive topic due to its significant advantages on environmental protection and economical benefits. Numerous studies have been reported focusing on analysis of the mechanisms behind low salinity waterflooding in order to better design the injected salinity under various working conditions and reservoir properties. However, the effect of injection salinity on pipeline scaling has not been widely studied, but this mechanism is important to gathering, transportation and storage for petroleum industry. In this paper, an exhaustive literature review is conducted to summarize several well-recognized and widely accepted mechanisms, including fine migration, wettability alteration, double layer expansion, and multicomponent ion exchange. These mechanisms can be correlated with each other, and certain combined effects may be defined as other mechanisms. In order to mathematically model and numerically describe the fluid behaviors in injection pipelines considering injection salinity, an exploratory phase-field model is presented to simulate the multiphase flow in injection pipeline where scale formation may take place. The effect of injection salinity is represented by the scaling tendency to describe the possibility of scale formation when the scaling species are attached to the scaled structure. It can be easily referred from the simulation result that flow and scaling conditions are significantly affected if a salinity-dependent scaling tendency is considered. Thus, this mechanism should be taken into account in the design of injection process if a sustainable exploitation technique is applied by using purified production water as injection fluid. Finally, remarks and suggestions are provided based on our extensive review and preliminary investigation, to help inspire the future discussions.


Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116542 ◽  
Author(s):  
Ngoc Nguyen ◽  
Cuong Dang ◽  
Seyhan Emre Gorucu ◽  
Long Nghiem ◽  
Zhangxin Chen

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rimsha Aziz ◽  
Vahid Joekar-Niasar ◽  
Pedro J. Martínez-Ferrer ◽  
Omar E. Godinez-Brizuela ◽  
Constantinos Theodoropoulos ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yue Shi ◽  
Chammi Miller ◽  
Kishore Mohanty

Summary Carbonate reservoirs tend to be oil-wet/mixed-wet and heterogeneous because of mineralogy and diagenesis. The objective of this study is to improve oil recovery in low-temperature dolomite reservoirs using low-salinity and surfactant-aided spontaneous imbibition. The low-salinity brine composition was optimized using ζ-potential measurements, contact-angle (CA) experiments, and a novel wettability-alteration measure. Significant wettability alteration was observed on dolomite rocks at a salinity of 2,500 ppm. We evaluated 37 surfactants by performing CA, interfacial-tension (IFT), and spontaneous-imbibition experiments. Three (quaternary ammonium) cationic and one (sulfonate) anionic surfactants showed significant wettability alteration and produced 43–63% of original oil in place (OOIP) by spontaneous imbibition. At a low temperature (35°C), oil recovery by low-salinity effect is small compared with that by wettability-altering surfactants. Coreflood tests were performed with a selected low-salinity cationic surfactant solution. A novel coreflood was proposed that modeled heterogeneity and dynamic imbibition into low-permeability regions. The results of the “heterogeneous” coreflood were consistent with that of spontaneous-imbibition tests. These experiments demonstrated that a combination of low-salinity brine and surfactants can make originally oil-wet dolomite rocks more water-wet and improve oil recovery from regions bypassed by waterflood at a low temperature of 35°C.


Sign in / Sign up

Export Citation Format

Share Document