Potential of dimethyl ether as an additive in CO2 for shale oil recovery

Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120643
Author(s):  
Shaoqi Kong ◽  
Gan Feng ◽  
Yueliang Liu ◽  
Kunjie Li
1970 ◽  
Vol 22 (12) ◽  
pp. 1520-1524 ◽  
Author(s):  
E.L. Burwell ◽  
T.E. Sterner ◽  
H.C. Carpenter
Keyword(s):  

2021 ◽  
Author(s):  
Robert Downey ◽  
Kiran Venepalli ◽  
Jim Erdle ◽  
Morgan Whitelock

Abstract The Permian Basin of west Texas is the largest and most prolific shale oil producing basin in the United States. Oil production from horizontal shale oil wells in the Permian Basin has grown from 5,000 BOPD in February, 2009 to 3.5 Million BOPD as of October, 2020, with 29,000 horizontal shale oil wells in production. The primary target for this horizontal shale oil development is the Wolfcamp shale. Oil production from these wells is characterized by high initial rates and steep declines. A few producers have begun testing EOR processes, specifically natural gas cyclic injection, or "Huff and Puff", with little information provided to date. Our objective is to introduce a novel EOR process that can greatly increase the production and recovery of oil from shale oil reservoirs, while reducing the cost per barrel of recovered oil. A superior shale oil EOR method is proposed that utilizes a triplex pump to inject a solvent liquid into the shale oil reservoir, and an efficient method to recover the injectant at the surface, for storage and reinjection. The process is designed and integrated during operation using compositional reservoir simulation in order to optimize oil recovery. Compositional simulation modeling of a Wolfcamp D horizontal producing oil well was conducted to obtain a history match on oil, gas, and water production. The matched model was then utilized to evaluate the shale oil EOR method under a variety of operating conditions. The modeling indicates that for this particular well, incremental oil production of 500% over primary EUR may be achieved in the first five years of EOR operation, and more than 700% over primary EUR after 10 years. The method, which is patented, has numerous advantages over cyclic gas injection, such as much greater oil recovery, much better economics/lower cost per barrel, lower risk of interwell communication, use of far less horsepower and fuel, shorter injection time, longer production time, smaller injection volumes, scalability, faster implementation, precludes the need for artificial lift, elimination of the need to buy and sell injectant during each cycle, ability to optimize each cycle by integration with compositional reservoir simulation modeling, and lower emissions. This superior shale oil EOR method has been modeled in the five major US shale oil plays, indicating large incremental oil recovery potential. The method is now being field tested to confirm reservoir simulation modeling projections. If implemented early in the life of a shale oil well, its application can slow the production decline rate, recover far more oil earlier and at lower cost, and extend the life of the well by several years, while precluding the need for artificial lift.


2021 ◽  
Author(s):  
Hilario Martin Rodriguez ◽  
Yalda Barzin ◽  
Gregory James Walker ◽  
Markus Gruenwalder ◽  
Matias Fernandez-Badessich ◽  
...  

Abstract This study has double objectives: investigation of the main recovery mechanisms affecting the performance of the gas huff-n-puff (GHnP) process in a shale oil reservoir, and application of optimization techniques to modelling of the cyclic gas injection. A dual-permeability reservoir simulation model has been built to reproduce the performance of a single hydraulic fracture. The hydraulic fracture has the average geometry and properties of the well under analysis. A history match workflow has been run to obtain a simulation model fully representative of the studied well. An optimization workflow has been run to maximize the cumulative oil obtained during the GHnP process. The operational variables optimized are: duration of gas injection, soaking, and production, onset time of GHnP, injection gas flow rate, and number of cycles. This optimization workflow is launched twice using two different compositions for the injection gas: rich gas and pure methane. Additionally, the optimum case obtained previously with rich gas is simulated with a higher minimum bottom hole pressure (BHP) for both primary production and GHnP process. Moreover, some properties that could potentially explain the different recovery mechanisms were tracked and analyzed. Three different porosity systems have been considered in the model: fractures, matrix in the stimulated reservoir volume (SRV), and matrix in the non-SRV zone (virgin matrix). Each one with a different pressure profile, and thus with its corresponding recovery mechanisms, identified as below: Vaporization/Condensation (two-phase system) in the fractures.Miscibility (liquid single-phase) in the non-SRV matrix.Miscibility and/or Vaporization/Condensation in the SRV matrix: depending on the injection gas composition and the pressure profile along the SRV the mechanism may be clearly one of them or even both. Results of this simulation study suggest that for the optimized cases, incremental oil recovery is 24% when the gas injected is a rich gas, but it is only 2.4% when the gas injected is pure methane. A higher incremental oil recovery of 49% is obtained, when injecting rich gas and increasing the minimum BHP of the puff cycle above the saturation pressure. Injection of gas results in reduction of oil molecular weight, oil density and oil viscosity in the matrix, i.e., the oil gets lighter. This net decrease is more pronounced in the SRV than in the non-SRV region. The incremental oil recovery observed in the GHnP process is due to the mobilization of heavy components (not present in the injection gas composition) that otherwise would remain inside the reservoir. Due to the main characteristic of the shale reservoirs (nano-Darcy permeability), GHnP is not a displacement process. A key factor in success of the GHnP process is to improve the contact of the injected gas and the reservoir oil to increase the mixing and mass transfer. This study includes a review of different mechanisms, and specifically tracks the evolution of the properties that explain and justify the different identified mechanisms.


Author(s):  
Lanlan Yao ◽  
Zhengming Yang ◽  
Haibo Li ◽  
Bo Cai ◽  
Chunming He ◽  
...  

AbstractImbibition is one of the important methods of oil recovery in shale oil reservoirs. At present, more in-depth studies have been carried out on the fracture system and matrix system, and there are few studies on the effect of energy enhancement on imbibition in shale oil reservoirs. Therefore, based on the study of pressurized imbibition and spontaneous imbibition of shale oil reservoirs in Qianjiang Sag, Jianghan Basin, nuclear magnetic resonance technology was used to quantitatively characterize the production degree of shale and pore recovery contribution under different imbibition modes, and analyze the imbibition mechanism of shale oil reservoirs under the condition of energy enhancement. The experimental results showed that with the increase in shale permeability, the recovery ratio of pressurized imbibition also increased. The rate of pressurized imbibition was higher than spontaneous imbibition, and pressurized imbibition can increase the recovery ratio of fractured shale. Spontaneous imbibition can improve the ultimate recovery ratio of matrix shale. Pressurized imbibition can increase the recovery contribution of macroporous and mesoporous.


Oil Shale ◽  
2015 ◽  
Vol 32 (3) ◽  
pp. 269 ◽  
Author(s):  
H QIN ◽  
J MA ◽  
W QING ◽  
H LIU ◽  
M CHI ◽  
...  

2019 ◽  
Vol 33 (8) ◽  
pp. 6904-6920 ◽  
Author(s):  
I Wayan Rakananda Saputra ◽  
Kang Han Park ◽  
Fan Zhang ◽  
Imad A. Adel ◽  
David S. Schechter

Sign in / Sign up

Export Citation Format

Share Document