An In-Depth Review of the Recovery Mechanisms for the Cyclic Gas Injection Process in Shale Oil Reservoirs

2021 ◽  
Author(s):  
Hilario Martin Rodriguez ◽  
Yalda Barzin ◽  
Gregory James Walker ◽  
Markus Gruenwalder ◽  
Matias Fernandez-Badessich ◽  
...  

Abstract This study has double objectives: investigation of the main recovery mechanisms affecting the performance of the gas huff-n-puff (GHnP) process in a shale oil reservoir, and application of optimization techniques to modelling of the cyclic gas injection. A dual-permeability reservoir simulation model has been built to reproduce the performance of a single hydraulic fracture. The hydraulic fracture has the average geometry and properties of the well under analysis. A history match workflow has been run to obtain a simulation model fully representative of the studied well. An optimization workflow has been run to maximize the cumulative oil obtained during the GHnP process. The operational variables optimized are: duration of gas injection, soaking, and production, onset time of GHnP, injection gas flow rate, and number of cycles. This optimization workflow is launched twice using two different compositions for the injection gas: rich gas and pure methane. Additionally, the optimum case obtained previously with rich gas is simulated with a higher minimum bottom hole pressure (BHP) for both primary production and GHnP process. Moreover, some properties that could potentially explain the different recovery mechanisms were tracked and analyzed. Three different porosity systems have been considered in the model: fractures, matrix in the stimulated reservoir volume (SRV), and matrix in the non-SRV zone (virgin matrix). Each one with a different pressure profile, and thus with its corresponding recovery mechanisms, identified as below: Vaporization/Condensation (two-phase system) in the fractures.Miscibility (liquid single-phase) in the non-SRV matrix.Miscibility and/or Vaporization/Condensation in the SRV matrix: depending on the injection gas composition and the pressure profile along the SRV the mechanism may be clearly one of them or even both. Results of this simulation study suggest that for the optimized cases, incremental oil recovery is 24% when the gas injected is a rich gas, but it is only 2.4% when the gas injected is pure methane. A higher incremental oil recovery of 49% is obtained, when injecting rich gas and increasing the minimum BHP of the puff cycle above the saturation pressure. Injection of gas results in reduction of oil molecular weight, oil density and oil viscosity in the matrix, i.e., the oil gets lighter. This net decrease is more pronounced in the SRV than in the non-SRV region. The incremental oil recovery observed in the GHnP process is due to the mobilization of heavy components (not present in the injection gas composition) that otherwise would remain inside the reservoir. Due to the main characteristic of the shale reservoirs (nano-Darcy permeability), GHnP is not a displacement process. A key factor in success of the GHnP process is to improve the contact of the injected gas and the reservoir oil to increase the mixing and mass transfer. This study includes a review of different mechanisms, and specifically tracks the evolution of the properties that explain and justify the different identified mechanisms.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1998
Author(s):  
Haishan Luo ◽  
Kishore K. Mohanty

Unlocking oil from tight reservoirs remains a challenging task, as the existence of fractures and oil-wet rock surfaces tends to make the recovery uneconomic. Injecting a gas in the form of a foam is considered a feasible technique in such reservoirs for providing conformance control and reducing gas-oil interfacial tension (IFT) that allows the injected fluids to enter the rock matrix. This paper presents a modeling strategy that aims to understand the behavior of near-miscible foam injection and to find the optimal strategy to oil recovery depending on the reservoir pressure and gas availability. Corefloods with foam injection following gas injection into a fractured rock were simulated and history matched using a compositional commercial simulator. The simulation results agreed with the experimental data with respect to both oil recovery and pressure gradient during both injection schedules. Additional simulations were carried out by increasing the foam strength and changing the injected gas composition. It was found that increasing foam strength or the proportion of ethane could boost oil production rate significantly. When injected gas gets miscible or near miscible, the foam model would face serious challenges, as gas and oil phases could not be distinguished by the simulator, while they have essentially different effects on the presence and strength of foam in terms of modeling. We provide in-depth thoughts and discussions on potential ways to improve current foam models to account for miscible and near-miscible conditions.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3961
Author(s):  
Haiyang Yu ◽  
Songchao Qi ◽  
Zhewei Chen ◽  
Shiqing Cheng ◽  
Qichao Xie ◽  
...  

The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.


2021 ◽  
Author(s):  
Mohd Ghazali Abd Karim ◽  
Wahyu Hidayat ◽  
Alzahrani Abdulelah

Abstract The objective of this paper is to investigate the effects of interfacial tension dependent relative permeability (Kr_IFT) on oil displacement and recovery under different gas injection compositions utilizing a compositional simulation model. Oil production under miscible gas injection will result in variations of interfacial tension (IFT) due to changes in oil and gas compositions and other reservoir properties, such as pressure and temperature. Laboratory experiments show that changes in IFT will affect the two-phase relative permeability curve (Kr), especially for oil-gas system. Using a single relative permeability curve during the process from immiscible to miscible conditions will result in inaccurate gas mobility against water, which may lead to poor estimation of sweep efficiency and oil recovery. A synthetic sector compositional model was built to evaluate the effects of this phenomenon. Several simulation cases were investigated over different gas injection compositions (lean, rich and CO2), fluid properties and reservoir characterizations to demonstrate the impact of these parameters. Simulation model results show that the application of Kr_IFT on gas injection simulation modelling has captured different displacement behavior to provide better estimation of oil recovery and identify any upside potential.


2016 ◽  
Vol 19 (02) ◽  
pp. 350-355 ◽  
Author(s):  
T.. Wan ◽  
J. J. Sheng ◽  
M. Y. Soliman ◽  
Y.. Zhang

Summary The current technique to produce shale oil is to use horizontal wells with multistage stimulation. However, the primary oil-recovery factor is only a few percent. The low oil recovery and abundance of shale reservoirs provide a huge potential for enhanced oil-recovery (EOR) process. Well productivity in shale oil-and-gas reservoirs primarily depends on the size of fracture network and the stimulated reservoir volume (SRV) that provides highly conductive conduits to communicate the matrix with the wellbore. The fracture complexity is critical to the well-production performance, and it also provides an avenue for injected fluids to displace the trapped oil. However, the disadvantage of gasflooding in fractured reservoirs is that injected fluids may break through to production wells by means of the fracture network. Therefore, a preferred method is to use cyclic gas injection to overcome this problem. In this paper, we use a numerical-simulation approach to evaluate the EOR potential in fractured shale-oil reservoirs by cyclic gas injection. Simulation results indicate that the stimulated fracture network contributes significantly to the well productivity by means of its large contact area with the matrix, which prominently enhances the macroscopic sweep efficiency in secondary cyclic gas injection. In our previous simulation work, the EOR potential was evaluated in hydraulic planar-traverse fractures without considering the propagation of a natural-fracture network. In this paper, we examine the effect of fracture networks on shale oilwell secondary-production performance. The impact of fracture spacing and stress-dependent fracture conductivity on the ultimate oil recovery is investigated. The results presented in this paper demonstrate that cyclic gas injection has EOR potential in shale-oil reservoirs. This paper focuses on evaluating the effect of fracture spacing, the size of the fracture network, fracture connectivity (uniform and nonuniform), and stress-dependent fracture-network conductivity on well-production performance of shale-oil reservoirs by secondary cyclic gas injection.


1999 ◽  
Vol 2 (01) ◽  
pp. 14-24 ◽  
Author(s):  
T.L. Hughes ◽  
F. Friedmann ◽  
D. Johnson ◽  
G.P. Hild ◽  
A. Wilson ◽  
...  

Summary Large-volume foam-gel treatments can provide a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs. The applicability and cost effectiveness of the approach depends on the availability of a cheap source of gas, the efficiency with which the foam can be placed into the high permeability thief zone(s), and the effectiveness of the gelled foam barrier in diverting reservoir drive fluids to improve oil recovery. This paper reviews progress in the application of large-volume CO2-foam-gel treatments to improve conformance in the Rangely Weber Sand Unit (RWSU), Colorado. During the period November 1996-November 1997 three large-volume foam-gel treatments were successfully placed into the Rangely reservoir. The first 36?400 bbl treatment, implemented November 1996, increased the pattern oil rate from 260 barrels of oil per day (BOPD) in March 1997 to ±330 BOPD in August 1998; a conservative estimate of incremental oil recovery is ±40?000 bbl by the end of August 1998. The second 43?450 bbl treatment, implemented August-September 1997, increased the pattern oil rate from ±430 BOPD in March 1998 to ±470 BOPD in August 1998; post-treatment, the pattern oil rate data is described by a linear regression with slope, +56 BOPD but it is too early to make a firm estimate of incremental oil recovery. The third 44?700 bbl treatment, implemented October-November 1997, increased the pattern oil rate from ±330 BOPD in May 1998 to ±375 BOPD in July-August 1998; a linear regression of the post-treatment data gives a positive slope but again it is too early to estimate incremental oil recovery. Some general features in the pattern production response given by the three foam-gel treatments were observed. First, each of the treatments induces a stabilization in the pattern oil rate which, for treatments I and II, is accompanied by a decrease in the pattern gas rate. Second, the first positive oil rate response given by each of the treatments is observed 6-8 months after treatment execution and is dominated by the response at producer wells lying to the west/southwest and/or east/southeast of the treated injector well. For a given treatment volume, the cost of a foam-gel treatment at Rangely is 40%-50% below the average cost of polymer gel treatments. As the foam is injected at a higher rate, the total pump time required for a 40?000 bbl foam-gel treatment is similar to a 20?000 bbl polymer gel treatment. Early during pumping treatments II and III, we attempted to increase the CO2 content of the foam from 80 to 85 vol?%; this resulted in a wellhead pressure which was too close to the CO2 pressure limit necessitating a decrease in foam injection rate. Thus, in optimizing foam-gel treatment cost, there is a balance between maximizing the content of the inexpensive CO2 phase and minimizing total pump time. For Treatments II and III, the cost of the liquid phase formulation was reduced by decreasing the concentrations of surfactant and buffer. The implementation and evaluation of three large-volume foam-gel treatments at Rangely indicates that the foam-gel approach provides a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs. Introduction A recent survey1 indicated that the proportion of U.S. EOR production recovered by gas injection has increased from 18% to 41% during the period 1986-1996. A major contribution to this trend has been the strong increase in the number of miscible carbon dioxide (CO2) projects which now account for > 70% of the total number of ongoing gas injection projects in the U.S. The Rangely CO2 flood began in 1986; currently, there are 372 active producer wells and 300 active injector wells, 259 of which are injecting CO2 using the water-alternating-gas (WAG) process. In the application of gas injection to heterogeneous reservoirs, oil recovery efficiency can be limited by poor conformance as an increasing proportion of the injected gas flows through higher permeability thief zones and/or fractures. The importance of conformance improvement has long been recognized at Rangely. The main problem being addressed is poor CO2 conformance due to preferential flow through the natural fracture network leading to premature gas breakthrough at the associated producers. This process increases operating costs and reduces oil recovery. The objective of the Rangely Conformance Improvement Team (CIT) is to improve conformance in order to reduce operating costs and increase the oil recovery to >1 billion bbl (>50% OOIP) compared to the current 815 million bbl (43% OOIP). A number of mechanical methods and chemical treatments have been employed to improve conformance at Rangely. While dual injection strings and selective injection equipment (SIE) have been used for improved injection profile control, chemical treatments using polymer gels2 and CO2 foam3 have been used to improve volumetric sweep efficiency and oil recovery. During the period 1994-1997, 49 injector wells were treated by placing a MARCIT™ gel4 into the fracture network.5 While these treatments have improved local sweep efficiency and oil recovery, economics limit the maximum treatment volume per injector well to 15?000-20?000 bbl. Certain regions of the Rangely reservoir require considerably larger treatment volumes to reduce the permeability of a larger volume of the fracture network and improve conformance in a larger volume of the well pattern.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianhua Qin ◽  
Jing Zhang ◽  
Shijie Zhu ◽  
Yingwei Wang ◽  
Tao Wan

Field observations discern that the oil production rate decreases substantially and water cut increases rapidly with the increase of steam injection cycles. Compared with steam drive, the advantage of flue gas (also called multi-component thermal gas) co-injection with steam is that flue gas can increase the reservoir pressure and expand the heating chamber. In this paper, the flue gas generated by fuel burning in the field was injected with steam to improve heavy oil recovery. This technique was investigated in the large laboratory 3D model and implemented in the field as well. The huff-n-puff process efficiency by flue gas, steam, and flue gas–steam co-injection was compared in the experiments. The field practice also demonstrated that the addition of non-condensable gas in the steam huff-n-puff process recovered more oil than steam alone. The temperature profile in the wellbore with flue gas injection is higher than that with steam injection since the low thermal conductivity of N2 reduces the heat loss. With the increase of stimulation cycles, the incremental oil recovery by flue gas injection declines significantly.


1970 ◽  
Vol 10 (01) ◽  
pp. 25-32
Author(s):  
W.P. Sibley

Abstract The high relief, fractured carbonate reservoirs of the Asmari formation in Iran have extremely thick oil columns, with a large vertical change of reservoir temperature. This large change results in a significant effect on reservoir fluid properties. In contrast, there is a remarkable uniformity of PVT properties on a horizontal plane. Therefore, to properties on a horizontal plane. Therefore, to obtain meaningful results from reservoir engineering studies, PVT properties must be carefully weighted vertically. Intensive study of the known oil recovery mechanisms within these highly fissured systems resulted in a sophisticated reservoir simulation model. The model is programmed to include these recovery processes, which occur essentially in horizontal layers or zones. It also includes a technique for volumetrically weighting the large vertical variation of the PVT data. A description of this weighting process is the primary purpose of this paper. Introduction Oilfield structures found in Iran have been described as very long, high relief, assymmetrical anticlines that contain unusually thick oil columns (see Fig. 1). The oil reservoirs generally are capped with large primary gas accumulations and are often affected by natural water drive. Producing formations include the Asmari, Bangestan, and Khami carbonates, with the Asmari being by far the most common and prolific. Although some Asmari reservoirs have been discovered that contain sandstones interbedded within the limestones and dolomites, most reservoirs in Iran contain the bulk of the oil in compact carbonates that have been contorted and highly fractured during structural deformation. The resulting anticlinal oil accumulations are produced mainly from complex fracture systems, which apparently exist quite uniformly throughout the dense matrix. Study of surface rocks, cores and well producibility show that well developed fissure producibility show that well developed fissure systems are responsible for the excellent fluid communication. Because the fissures contain relatively little oil, maintenance of such prolific rates is dependent upon rate of oil replenishment from the adjacent matrix. The various productive mechanisms determine the rate of replenishment and duration. RESERVOIR AND MODEL CONSIDERATIONS Engineering studies of the fissured Iranian reservoirs have led to a mathematical model that is even more sophisticated than an earlier one. Many complex features have been included in the current model, making it a useful aid for advising management. The model consists of a master digital computer program that encompasses 54 subprograms and runs on any of the IBM 7040, 7090 and 360/65 computers. The known oil recovery mechanisms included in the model are based on consideration of practical oil recovery observations. For example, oil recovery from the expanding gas cap is predicted by using recognized gravity drainage formations, but if necessary, retrograde condensation recovery from the gas cap can also be included. Fluid and rock expansion, solution gas drive, and water displacement are also included, and vary according to the reservoir in question. But the manner in which gas production differs from what is usually observed in a solution gas drive must be known to include a proper simulation of behavior. Experience has shown that the producing gas-oil ratio continues to decline during the entire producing life of a well unless the proximity of the gas cap results in gas coning, at which time the well is shut in. Material balance calculations show that the initial gas-oil separation singe actually occurs in the reservoir, with the fissure system readily enabling the liberated gas to segregate toward the gas cap. SPEJ P. 25


Sign in / Sign up

Export Citation Format

Share Document