Hydrogen fueled scramjet combustor with a wavy-wall double strut fuel injector

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121425
Author(s):  
Obula Reddy Kummitha ◽  
K.M. Pandey
2015 ◽  
Vol 18 (4) ◽  
pp. 1181-1210 ◽  
Author(s):  
Juan-Chen Huang ◽  
Yu-Hsuan Lai ◽  
Jeng-Shan Guo ◽  
Jaw-Yen Yang

AbstractThe non-equilibrium chemical reacting combustion flows of a proposed long slender scramjet system were numerically studied by solving the turbulent Reynolds averaged Navier-Stokes (RANS) equations. The Spalart-Allmaras one equation turbulence model is used which produces better results for near wall and boundary layer flow field problems. The lower-upper symmetric Gauss-Seidel implicit scheme, which enables results converge efficiently under steady state condition, is combined with the weighted essentially non-oscillatory (WENO) scheme to yield an accurate simulation tool for scramjet combustion flow field analysis. Using the WENO schemes high-order accuracy and its non-oscillatory solution at flow discontinuities, better resolution of the hypersonic flow problems involving complex shock-shock/shock-boundary layer interactions inside the flow path, can be achieved. Two types of scramjet combustor with cavity-based and strut-based fuel injector were considered as the testing models. The flow characteristics with and without combustion reactions of the two types combustor model were studied with a transient hydrogen/oxygen combustion model. The detailed results of aerodynamic data are obtained and discussed, moreover, the combustion properties of varying the equivalent ratio of hydrogen, including the concentration of reacting species, hydrogen and oxygen, and the reacting products, water, are demonstrated to study the combustion process and performance of the combustor. The comparisons of flow field structures, pressure on wall and velocity profiles between the experimental data and the solutions of the present algorithms, showed qualitatively as well as the quantitatively in good agreement, and validated the adequacy of the present simulation tool for hypersonic scramjet reacting flow analysis.


Author(s):  
Obula Reddy Kummitha ◽  
K M Pandey

Abstract The shear mixing and streamline vortices are the notable parameters to influence the air–fuel mixing in hypersonic flows. The shock wave development and Mach number significantly influence the shear mixing phenomenon. Hence, this research introduced an unconventional strut and tested its performance for the generation of shock waves at different flow conditions (M = 2,4,6). The Reynolds-averaged Navier–Stokes equations are solved to evaluate the performance of the new strut. Both the DLR scramjet strut injector and wavy wall strut injector are assessed for the shear mixing development. Turbulence for the association of shock waves, mixing layer, and the boundary layer has been modeled with the SST k-ω model. The variation in shock development and its interactions are investigated further with an increase in Mach number. The scramjet flow structure differentiation found the increased number of oblique shock waves with the wavy wall strut fuel injector. It increases the turbulence level with increased streamline vortices, turbulent intensity, and turbulent kinetic energy. The shock wave generation analysis at different Mach numbers (M = 2,4,6) found fewer interactions between the shock wave and shear layer with increased Mach number. From the examination of shock wave generation and its interaction with the shear layer and analysis of turbulent parameters, it is found that the wavy wall strut has an appreciable effect on shock-induced blend augmentation of fuel and air.


2000 ◽  
Author(s):  
M. Gruber ◽  
J. Donbar ◽  
T. Jackson ◽  
T. Mathur ◽  
D. Eklund ◽  
...  

2014 ◽  
Vol 656 ◽  
pp. 53-63 ◽  
Author(s):  
Krishna Murari Pandey ◽  
Sukanta Roga

This paper presents a numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach 6 with cavity based injection. Fuel is injected at supersonic speed of Mach 2 through a cavity based injector. These numerical simulations are aimed to study the flow structure, supersonic mixing and combustion for cavity based injection. For the reacting cases, the shock wave pattern is modified which is due to the strong heat release during combustion process. The shock structure and combustion phenomenon are not only affected by the geometry but also by the flight Mach number and the trajectory. The inlet-combustor interaction is studied with a fix location of cavity based injection. Cavity is of interest because recirculation flow in cavity would provide a stable flame holding while enhancing the rate of mixing or combustion. The cavity effect is discussed from a view point of mixing and combustion efficiency.


2018 ◽  
Author(s):  
Parag Rajpara ◽  
Ankit Dekhatawala ◽  
Rupesh Shah ◽  
Jyotirmay Banerjee

Sign in / Sign up

Export Citation Format

Share Document